Spin the Web

Weaving Digital Portals

vl e

& £
Data Web Server E‘? ";‘E;
Space Space p

Credentials Localization

<l > e \

‘\E rﬁ <}:{> U F\%\jﬁ _ <:::> Spin the Web Studio
\Web services @ -

P

Web spinner

10T

NNy
B

Web browser

File systems

Webbase (WBDL)

Spin the Web Foundation

Visualize, then Realize: Weaving Web Portals to Shape Your Brand’s Identity.

Compiled on 2025-09-17 04:33:51+02:00

ii

License

Copyright © 1998-2025 Giancarlo Trevisan

This work is licensed under the
Creative Commons Attribution—ShareAlike 4.0 International
(CC BY-SA 4.0).

To view a copy of this license, visit

https://creativecommons.org/licenses/by-sa/4.0/

You are free to share and adapt the material for any purpose, even commercially, provided that
you give appropriate credit and distribute your contributions under the same license as the
original. For attribution, cite the work as: “Spin the Web (Morphic Edition), Giancarlo Trevisan,
2025.7

Note: This license applies to the book’s content. The Spin the Web framework itself is intended
to remain free to use under the stewardship of the Spin the Web Foundation, which publishes

and maintains the specifications and reference implementations.

https://creativecommons.org/licenses/by-sa/4.0/

iv

To the Internet, a neverending source of knowledge.

To the open source community, a wonderful group that shares its thoughts in hacks and code.

Abstract

Spin the Web is an open source framework for building enterprise web portals (“portals”) with

the intent of virtualizing the enterprise brand—eBranding. It addresses the persistent challenge
of unifying heterogeneous enterprise systems (ERP, CRM, BPMS, and MRP systems) behind a

single, role-aware digital channel, providing consistent abstractions over disparate backends. The

framework is stewarded by the Spin the Web Foundation.

The framework comprises three core components:

1.

Webbase Description Language (WBDL): A declarative language for modeling portal structure,

content, and behavior.

. Web Spinner: An engine that interprets webbases (modular portal definitions written in

WBDL) to dynamically generate personalized user experiences with real-time content delivery

and role-based authorization.

. Spin the Web Studio: An authoring webbaselet for in-place editing of webbases; it also serves

as a laboratory for exercising the Web Spinner.

The project also introduces:

Webbaselets: Modular, self-contained WBDL fragments that encapsulate integrations with
enterprise systems.

Webbase Placeholders Language (WBPL): A security-conscious templating mechanism for
parameterized queries.

Webbase Layout Language (WBLL): A token-based templating language for presentation and
rendering.

Virtualized Company paradigm: A unified portal interface for customers, employees, suppliers,
partners, and governance stakeholders, with the primary objective of digitally harboring the

brand (eBranding).

This book combines foundational concepts with practical guidance for developers, integrators,

and technology leaders seeking to modernize digital channels.

Keywords: web portals; eBranding; webbase; webbaselets; framework; Spin the Web Foundation;
STW.

vi

Preface

Why This Book

In the rapidly evolving landscape of enterprise software, organizations find themselves trapped
in a web of disparate systems, each with its own interface, data model, and user experience
paradigm. Employees struggle to navigate between multiple applications, customers face frag-
mented touchpoints, and partners encounter inconsistent integration patterns. The promise of

digital transformation often falls short because these systems remain fundamentally siloed.

Spin the Web emerged from real-world frustration with this fragmentation. After building
custom integrations, developing multiple user interfaces, and watching organizations struggle
with the complexity of their own digital ecosystems, it became clear that a fundamentally different

approach was needed.

What Makes This Different

This book introduces a paradigm shift: instead of trying to integrate disparate systems at the
data level, let’s integrate them at the experience level! The WBDL specification provides a way to
describe portal structures that can encompass any type of enterprise system. The Web Spinner
engine interprets WBDL to enable real-time content delivery. The Spin the Web Studio provides

the tools to build and maintain these portals efficiently.

What sets this approach apart is the concept of the "virtualized company"—a single, coherent
digital interface that adapts to each user’s role[s] and needs, whether they are a customer,
employee, supplier, or partner. This isn’t just another portal framework; it’s a complete
rethinking of how organizations should present themselves digitally, i.e., how they should be
eBranded.

Who Should Read This Book

This book is written for professional software developers, enterprise architects, and technology
leaders who are responsible for building or maintaining complex webbased systems. While the
concepts are accessible to developers with basic web development experience, the focus is on
enterprise-grade solutions that require sophisticated understanding of system integration, security,

and scalability.
Specifically, this book will be valuable to:

o Full-stack developers building enterprise web applications

vii

viii

System architects designing portal solutions

Development team leads planning integration strategies

Technology consultants working with enterprise clients

CIOs and CTOs evaluating portal technologies

How This Book Is Organized

The book follows a logical progression from concepts to implementation:

Part I establishes the theoretical foundations, explaining the problem space and introducing the

core concepts of Spin the Web.

Part II dives deep into the core trio of the Blueprint, the Engine, and the Workshop: the
WBDL language specification, the Web Spinner engine architecture, and the Spin the Web Studio

development environment.

Part ITII focuses on web portal development—design, structure, user experience, and best practices.

Where appropriate, the framework’s features and approaches are illustrated in context.
Part IV documents future directions, this part of the book will continue to evolve.

Each part builds upon previous concepts while remaining sufficiently self-contained for reference

use.

About the Spin the Web Foundation

The mission of the Spin the Web Foundation is to divulge, manage, and evolve the Spin the Web
framework while keeping it free to use. The Foundation stewards specifications (WBDL, WBPL, WBLL),
reference implementations (the Web Spinner and Spin the Web Studio), and ecosystem guidance

so that individuals and organizations can adopt, extend, and interoperate without vendor lock-in.

To that end, this book documents the conceptual model and provides practical, implementation-
oriented guidance. Where contributions, governance, or trademark policies are relevant, they are

handled transparently by the Foundation.

Project repository: https://github.com/spintheweb.

Acknowledgments

The practical insights in this book were refined through collaboration with enterprises, integration
partners, and the broader community of developers working to solve real-world portal challenges—
a journey that dates back to 1998.

Giancarlo Trevisan
2025-09-17

https://github.com/spintheweb

Contents

Abstract

Preface

I The Philosophy

Introduction to Part I

1 Genesis and History

2 Introduction to Enterprise Portal Challenges
3 Web Portals as Virtualized Companies

4 Architecture Overview

IT The Framework

Introduction to Part II: The Framework

5 Webbase Description Language (WBDL)

6 Webbase Placeholders Language (WBPL)

7 Webbase Layout Language (WBLL)

8 Webbase and Webbaselets

9 The Web Spinner

10 Spin the Web Studio: An Integrated Development Environment

11 Technology Stack and Implementation

ix

vii

13

19

25

31

33

35

41

45

47

53

59

63

X Contents

IIT The Web Portal 67
Introduction to Part III: The Web Portal 69
12 Implementing Portal Contents: Structure, Semantics, and Information Flow 71
13 Implementing Portal Visuals: Presentation, Layout, and Interaction 75
IV The Roadmap 81
Introduction to Part IV 83
14 The Roadmap 85
Appendices 91
A WBDL JSON Schema Reference 91
B WBLL Token Reference 95

C Webbaselets: BPMS, PLM, and Ticketing 105

Part 1

The Philosophy

Introduction to Part |

"The best way to predict the future is to create it."
— Peter Drucker

In this opening part, we explore the historical origins and fundamental challenges that led to
Spin the Web, and introduce the conceptual foundations that guide its approach to enterprise

portal development.

We begin with the project’s genesis in the late 1990s, tracing its evolution from a practical
business challenge to the framework. We then examine the current landscape of enterprise
software, where organizations struggle with fragmented user experiences across multiple systems.
Next, we introduce the concept of the "virtualized company"—a unified digital interface that

adapts to each stakeholder’s role[s] and needs.

Finally, we provide an overview of the core architecture that makes this vision possible: the
WBDL specification for describing portal structures, the Web Spinner engine for dynamic content

delivery, and the Spin the Web Studio for development and maintenance.

Chapter 1: Genesis and Historical Context (chapter 1) — Explores the real-world origins of Spin
the Web, from its birth in an Italian jewelry business in the late 1990s through the evolution
of the eBranding concept. This chapter provides crucial context for understanding both
the technical innovations and business philosophy underlying the framework.

Chapter 2: Introduction to Enterprise Portal Challenges (chapter 2) — Examines the contem-
porary challenges facing modern enterprises in their digital transformation journeys and
introduces the foundational concepts of Spin the Web.

Chapter 3: Web Portals as Virtualized Companies (chapter 3) — Introduces the concept of web
portals as "virtualized companies"—unified digital interfaces that provide role-based access
to all organizational functions, serving diverse stakeholders from employees to customers to
partners.

Chapter 4: The Blueprint, Engine, and Workshop (chapter 4) — Provides an overview of the
core architecture that makes the virtualized company vision possible: the WBDL specification
(Blueprint), the Web Spinner engine (Engine), and the Spin the Web Studio (Workshop).

These foundational concepts lay the groundwork for the technical exploration presented in

subsequent parts of the book.

Chapter 1

Genesis and History

This chapter explores the real-world origins of Spin the Web, tracing its evolution from a
practical business challenge in the late 1990s to the systematic framework presented in this book.
Understanding this genesis provides context for appreciating both the technical innovations and

the business philosophy that underpin the project.

1.1 The ltalian Jewelry Business Challenge

In the late 1990s, the digital landscape was vastly different from today’s interconnected world.
Enterprise software was fragmented, web technologies were in their infancy, and businesses

struggled to integrate their complex operational structures into cohesive digital experiences.

It was during this period that the seeds of Spin the Web were planted through a consulting
engagement with an Italian jewelry business. This company represented the complexity typical
of many enterprises: a nationwide sales force, distributed points of sale, international suppliers,
in-house and national jewelry designers and manufacturers, a help desk, and a call center. Each

component of this business ecosystem had its own requirements, processes, and stakeholders.

The challenge was clear: how to network this intricate structure in a way that would enable
seamless collaboration, efficient information flow, and unified business processes across all

participants in the ecosystem.

1.2 From Lotus Notes to Web Technologies

1.2.1 The Lotus Notes Solution

To address their networking needs, the company’s I'T department had implemented Lotus Notes,
a collaborative client-server software platform developed at IBM. This choice was both sensible

and forward-thinking for its time:

o Effective Use of Available Connectivity: Lotus Notes made intelligent use of the limited
connectivity options available in the late 1990s
e Data Replication: The platform successfully replicated data stored in a proprietary NoSQL

database across distributed locations

6 Chapter 1. Genesis and History

¢ Development Environment: It provided a respectable development environment for building
front-ends to interact with business data

o Collaborative Features: Beyond data management, Lotus Notes offered collaborative features
that enhanced team communication

e Multi-Purpose Platform: The sales force and points of sale used it to browse product catalogs

and place orders, while the help desk and call center leveraged it as a knowledge base

1.2.2 The Hybrid Solution Challenge

When tasked with developing a solution to interface with the manufacturers, a significant technical
challenge emerged. Lotus Notes did not handle SQL data particularly well, creating a mismatch

between the platform’s strengths and the manufacturers’ data systems.

The solution adopted was a hybrid approach—a compromise that bridged the gap between
the Lotus Notes environment and SQL-based manufacturing systems. While this approach
was functional and met the immediate business needs, it highlighted a fundamental limitation:
the difficulty of creating truly unified interfaces when working with disparate systems and

technologies.

This experience planted the first seeds of what would later become the webbaselet concept—the
idea that different business systems could be unified through a common interface layer without

requiring them to abandon their underlying architectures.

1.3 The Dynamic Web Pages Revelation

1.3.1 The Internet Evolution

As this project unfolded, the Internet was undergoing a revolutionary transformation. Dynamic
web pages were making their debut!, fundamentally changing how web applications could be

conceived and implemented.

A dynamic web page represented a paradigm shift: rather than serving static HTML content,
web servers could now assemble pages on-demand in response to specific client requests. This
concept proved to be profoundly powerful and opened up entirely new possibilities for enterprise

applications.

1.3.2 The Conceptual Breakthrough

The revelation came through understanding the full implications of dynamic page generation:

o Universal Data Access: Data sources in general could be queried by the web server in response
to client requests
¢ On-Demand Rendering: Fetched data could be rendered as HIT'ML before being sent to the

client

!The technologies primarily referenced are ASP and PHP, which made dynamic pages easier to build. CGI had
been available for some time and could accomplish similar functionality, but these newer technologies significantly
lowered the barrier to entry.

1.4. The Portal Vision Emerges 7

e Intuitive Data Interaction: Clients could inspect data intuitively and perform insertions,
updates, and deletions (CRUD operations)
e Unified Interface: The same web page could host data coming from disparate data sources in

a coherent, tailored graphical user interface

This led to a pivotal insight: web technologies could be used not just for public-facing websites,

but as the foundation for enterprise portals.

1.4 The Portal Vision Emerges

1.4.1 Beyond Traditional Websites

While developing a proof of concept for this dynamic approach, a transformative idea crystal-
lized: use web technologies inside the company to build a web site—an eSite, later termed a

portal—whose target audience extended far beyond the general public.
This portal would serve:

e Company Employees: Access to internal systems, processes, and information
e Sales Force: Product catalogs, order management, and customer relationship tools
e Suppliers: Integration points for inventory, orders, and collaboration

o Customers: Self-service capabilities and direct business interaction

The vision was compelling: a single, webbased interface that could accommodate the diverse
needs of all stakeholders in the business ecosystem, while maintaining security, personalization,

and role-based access control.

1.4.2 The Systematic Approach Imperative

The idea was undoubtedly sound, but implementing it successfully required more than ad-hoc
development. What was needed was a systematic approach—a framework that could handle the

complexity of enterprise portals in a consistent, scalable, and maintainable way.

This realization marked the beginning of what would eventually become Spin the Web’s core
mission: developing the tools, languages, and methodologies necessary to transform the portal

vision into practical reality.

1.5 The Birth of WBDL

1.5.1 Language Requirements

The systematic approach demanded the definition of a specialized language capable of describing

entire web sites with unprecedented detail and flexibility. This language would need to handle:

o Complex Site Structure: Hierarchical organization of areas, pages, and content
e Routing Logic: URL-to-content mapping and navigation flows
¢ Authorization Rules: Role-based access control and visibility management

e Internationalization: Multi-language support for global enterprises

8 Chapter 1. Genesis and History

o Data Integration: Connections to diverse data sources and systems

This language would need to be structured enough to handle complex enterprise realities while
remaining flexible enough to evolve with changing business needs. This language was named
WBDL (Webbase Description Language).

1.5.2 Interpreter Requirement

Alongside the language definition, a second critical requirement emerged: the development of
an interpreter—the Web Spinner—that could take a URL request, fetch the associated WBDL

fragment, and render it dynamically.

The analogy was clear and powerful: just as HTML is interpreted by a web browser to create
user-facing web pages, WBDL would be interpreted by a Web Spinner to create complete portal

experiences.
This interpreter would need to:

¢ Parse and understand WBDL documents

e Handle user authentication and authorization

Manage data source connections and queries

Render content appropriately for different users and contexts

Maintain high performance under enterprise-scale loads

1.6 Evolution and Persistence of the Vision

1.6.1 Timeless Principles

Since its inception, WBDL has demonstrated remarkable resilience and relevance. The core principles

identified in the late 1990s have proven to be enduring:

¢ Descriptive Power: WBDL can describe web sites with the same ease today as it could in the
past

e Technology Independence: The framework remains relevant despite the rapidly evolving
Internet landscape

¢ Systematic Consistency: Much like HTML, WBDL provides a stable foundation that transcends

specific technological implementations

This persistence suggests that the project identified fundamental patterns and requirements
that are intrinsic to enterprise portal development, rather than merely addressing temporary

technological limitations.

1.6.2 Continuous Refinement

While the core vision has remained stable, Spin the Web has been able to manage new insights,
technologies, and best practices. This evolution has been guided by real-world implementation

experiences and the changing needs of enterprise software development.

1.7. The eBranding Concept 9

The framework’s ability to adapt while maintaining its essential character speaks to the soundness

of its foundational principles and architectural decisions.

1.7 The eBranding Concept

1.7.1 Defining eBranding

The practical experiences and technical innovations of Spin the Web eventually crystallized into

a broader business philosophy: eBranding.

eBranding is defined as the act of virtualizing all virtualizable aspects of an entity, be it an
organization, a company, a trade, or a group. This concept extends far beyond traditional web

presence or digital marketing.

1.7.2 The Ultimate eBranding Goal

The ultimate goal of eBranding is to build a web portal—a "website on steroids"—whose target

audience encompasses:

e Public: General public and media

e Customers: Primary market and service recipients
e Suppliers: Business partners and service providers
o Shareholders/Investors: Financial stakeholders and governance bodies
e Regulators: Compliance and oversight entities

o Partners: Strategic allies and collaborators

o Distributors: Channel partners and intermediaries
e Contractors: Service providers and consultants

o Employees: Internal workforce and management

e Community: Local and industry communities

o Developers: Technical contributors and integrators

o Other Web Portals: System-to-system integration points

This portal serves as an all-encompassing channel for any kind of interaction with the entity—a

digital manifestation of the organization that evolves continuously with the business itself.

1.7.3 Integration Philosophy

Spin the Web’s approach to eBranding is fundamentally integrative rather than disruptive. The

framework’s intentions are:

o Not to Replace: Existing systems and processes remain valuable and should be preserved
where appropriate

o But to Integrate: Everything should be brought together in a unified environment

e Enable Evolution: The brand and its digital presence should be able to evolve naturally over
time

o Leverage the Internet: Use Internet technologies as the foundation for this integration

10 Chapter 1. Genesis and History

This philosophy recognizes that most enterprises have significant investments in existing systems
and processes. Rather than requiring wholesale replacement, Spin the Web provides a framework

for unifying these disparate elements into a coherent whole.

1.8 The Evolution of Webbase Concept

1.8.1 From Relational Database to Schema-Defined Structures

The conceptual foundation of Spin the Web has its roots in a pioneering approach first developed
in 1998. The initial breakthrough came with the introduction of the term webbase—a specialized

relational database whose schema was specifically designed to define and manage web structures.
This original webbase encompassed all the essential aspects of web presence:

Structure : Hierarchical organization of areas, pages, and contents
Data Sources : Connections to databases

Content : Text, media, and interactive elements

Layout : Visual presentation and responsive design patterns
Localization : Multi-language support and cultural adaptation
Navigation : User journey flows and interaction patterns

Security : Access control and authorization paradigms

1.8.2 The Schema Revolution: XML and JSON

While the relational database approach proved effective, it presented challenges for portability
and interoperability. To address these limitations, the webbase concept underwent a fundamental

transformation—it was formalized into a schema-based language structure.
Initially, this took the form of an XML-based language, which introduced two crucial concepts:

Webbase Description Language (WBDL) : An XML schema that formally defined how web
portals should be structured, replacing the relational database schema with a portable,
standardized format.

Webbaselet : A modular fragment of a webbase that could be independently developed, main-

tained, and integrated.

As web technologies evolved, the project embraced JSON Schema as a more contemporary
and lightweight alternative. This migration aligned WBDL with modern development ecosystems,
particularly those centered around JavaScript and TypeScript, while preserving the core principles
of declarative structure and modularity. This transition from database schema to XML and
finally to JSON Schema laid the foundation for the modular approach that characterizes Spin
the Web today.

1.8.3 Content Management System Integration

The formalization of WBDL positioned it as a fundamental language for Content Management

Systems (CMS). This integration capability addresses several critical enterprise needs:

e Separation of Concerns: Content structure is independent of presentation technology

1.9. From Vision to Reality 11

e Version Control: Portal configurations can be managed with standard software development
practices

o Workflow Integration: Content approval and publishing processes integrate naturally with
WBDL structures

¢ Multi-Channel Publishing: The same webbase can serve web, mobile, and API clients

1.9 From Vision to Reality

The journey from the late 1990s Italian jewelry business challenge to the framework presented
in this book represents several years of refinement, implementation, and evolution. The core

insights discovered during that initial project have proven to be both durable and expandable.

What began as a practical solution to a specific business networking challenge has evolved into a
systematic approach for enterprise portal development that addresses fundamental patterns in

how organizations interact with their diverse stakeholders.

The following chapters in this book detail the technical implementation of these insights, providing
the practical tools and methodologies needed to transform the eBranding vision into working

enterprise portals.

Next: In chapter 2, we explore the contemporary enterprise portal challenges that Spin the Web
addresses, setting the stage for understanding how this historical foundation applies to today’s

digital landscape.

12

Chapter 1. Genesis and History

Chapter 2

Introduction to Enterprise Portal Chal-
lenges

"The single biggest problem in communication is the illusion that it has taken place.”

— George Bernard Shaw

2.1 The Enterprise Software Dilemma

In today’s digital economy, businesses operate through a complex web of disparate software
systems—ERPs, CRMs, BPMSs, MRPs, and much more. While individually capable, these systems
often create siloed user experiences, forcing employees, customers, and partners to navigate
multiple interfaces to perform their tasks. This fragmentation leads to inefficiency, poor user

adoption, and a disjointed view of the enterprise.

The Spin the Web addresses this challenge head-on. The word “Spin” is used in the sense of “to
weave,” as a spider dynamically weaves a web. The project is designed to weave together disparate
systems and user experiences into a single, coherent whole, based on Internet technologies. It
introduces a new paradigm for developing web portals centered on three core components: a
specialized language, the Webbase Description Language (WBDL); a server-side rendering engine,
the Web Spinner; and a specialized webbaselet for editing webbases, the Spin the Web Studio.
The project’s core mission is to enable the creation of unified, role-based web portals that act as

a "virtualized company'—a single, coherent digital channel for all business interactions. !

It is important to note that Spin the Web is a professional framework. It is not a low-code/no-code
platform for the general public, but rather a toolset for engineers building bespoke, enterprise-
grade web portals. On this subject we could open a parenthesis: low-code/no-code platforms
often promise ease of use and rapid development but frequently fall short when it comes to
scalability, customization, and integration with existing systems. Spin the Web aims to fill this
gap by providing a robust framework that empowers developers to create highly tailored solutions

without being constrained by the limitations of low-code/no-code environments.

LCompanies like SAP should prioritize robust data structures and business logic, exposing them through
well-documented APIs rather than enforcing rigid user interfaces. While their ambition to “include the world” is
commendable, the resulting environments often suffer from visual incoherence and operational friction with the
enterprise’s unique needs. Spin the Web advocates a modular approach: let foundational systems focus on data
integrity and process orchestration, while role-based portals handle presentation, interaction, and organizational
identity. See Sections 2.3 and 2.6 for a deeper exploration of this architectural separation.

13

14 Chapter 2. Introduction to Enterprise Portal Challenges

2.2 Understanding Web Portals

The development of a company web portal has two main goals: to document how things are
done and to provide a means for doing them. It is an all-encompassing digital channel wrapped
in a uniform, shared, accessible, and protected environment. It is crucial to understand that
"uniform" should not be interpreted as monotonous or uncreative; on the contrary, it refers to a

consistent and coherent user experience that reduces cognitive load and enhances usability.

Web portals expand on the concept of a traditional website by serving a diverse, segmented
audience that includes not only the general public but also internal and external stakeholders like
employees, clients, suppliers, governance bodies, and developers. They function as virtualized
companies, allowing individuals, based on their specific role[s], to interact with every facet of
the organization—from administration and logistics to sales, marketing, human resources, and

production. It is a comprehensive framework for:

Multi-Audience Communication : Providing tailored content and functionality for different user
groups

Bi-directional Data Interaction : Enabling users to not only consume data but also to input,
manage, and interact with it, effectively participating in business processes

Centralized Access : Acting as a single point of access to a wide array of company information,
applications, and services

Role-Based Personalization : Ensuring that the experience is secure and customized, granting
each user access only to the information and tools relevant to their role

System-to-System Integration : Exposing its functionalities as an API, allowing it to be con-

tacted by other web portals or external systems, which can interact with it programmatically

WBDL is the language specifically designed to model the complexity of web portals, defining their

structures, data integrations, and authorization rules that govern this dynamic digital ecosystem.

2.3 The Integration Vision

The concept of the webbaselet opens the door to a vision for the future of enterprise software. In
this vision, monolithic and disparate systems like Enterprise Resource Planning (ERP), Customer
Relationship Management (CRM), Business Process Management Systems (BPMS), and Manufactur-
ing Resource Planning (MRP) no longer need to exist in separate silos with their own disjointed

user interfaces.

Instead, the front-end of each of these critical business systems could be engineered as a self-
contained webbaselet. These webbaselets could then be seamlessly integrated into a single, unified

company webbase.

The result would be a high level of coherence and consistency across the entire enterprise software
landscape. Users would navigate a single, familiar portal environment, moving effortlessly between
what were once separate applications. This approach would not only improve the user experience

but also simplify the development, deployment, and maintenance of enterprise front-ends.

2.4. The Book Analogy 15

Extending large platforms can be costly. Spin the Web excels at adding smaller, targeted features

that are often prohibitively expensive for major vendors to implement.

2.4 The Book Analogy

To better understand the structure of a web portal defined in WBDL, it’s helpful to use the analogy
of a book. The portal is organized hierarchically, much like a book is divided into chapters, pages,
and paragraphs. However, the book analogy ends there: web technologies introduce hyperlinks
and dynamic routing that open a new, non-linear dimension. The sequence in which users
traverse the portal is not fixed; it changes based on navigational setups—menus, breadcrumbs,
deep links, search results, role-based visibility, and workflow-driven redirects—so journeys adapt

to context, permissions, and intent.

Areas (STWArea) : These are the main sections of the portal, analogous to the chapters of a book.
An area groups related pages together but also other areas.

Pages (STWPage) : Contained within Areas, these are the individual pages of the book. Each
page holds the actual content that users will see.

Content (STWContent) : These are the building blocks of a page, analogous to paragraphs. They
could be tables, trees, menus, tabs, calendars, lists, plots, or any other content that presents
data but also interacts with data (APIs); for example, the command of a content, as we’ll

see later, could be lines of code.

STWArea, STWPage, and STWContent are all specialized types that inherit from the base STWElement,

sharing its common properties while also having their own specific attributes and behaviors.

2.5 Portal Organization and User Journeys

The structure of a web portal built with WBDL is typically organized around the core functions of
the business it represents. This creates a logical and intuitive navigation system for all users.

Common top-level Areas (STWArea) would include:

e Sales

e Administration
o Backoffice

e Technical Office
o Logistics

o Products & Services (often publicly viewable)

The full potential of the portal is revealed when we consider the specific journeys of different users,
or personas. The portal uses a role-based system to present a completely different experience to

each user, tailored to their needs and permissions.

2.5.1 Example User Journeys

The Customer:

« Logs into the portal and is directed to a personalized "Customer Dashboard" page

16 Chapter 2. Introduction to Enterprise Portal Challenges

Can view their complete order history in a dedicated "My Orders" area

Can track the real-time status of current orders (e.g., "Processing," "Shipped")

Can initiate a video chat with their designated sales representative directly from the portal

Can open a support ticket or schedule a consultation with the Technical Office
The Supplier:

e Logs in and sees a "Supplier Dashboard"
e Can access a "Kanban View" page to see which materials or components require replenishment
e (Can submit new quotations through an integrated form

e Can view the status of their invoices and payments
The Employee:

e Logs in and is presented with an "Employee Self-Service" area
e Can access a "Welfare Management" page to view and adjust their benefits

e Can view internal company news, submit vacation requests, and access HR documents
The CEO:

e Logs in to a high-level "Executive Dashboard"
e Can view key performance indicators (KPIs) for the entire company, such as sales figures,
production output, and financial health

e Can access detailed reports from various departments

These user journeys demonstrate how WBDL’s hierarchical structure and role-based visibility rules
work together to create a highly functional and personalized web portal that serves as a central

hub for the entire business ecosystem.

2.6 The Greater Vision: eBranding Through Portal Development

This book’s mission extends beyond technical instruction to address a fundamental challenge
in modern web portal development: creating coherent digital brand experiences in an era of
fragmented enterprise systems. The Spin the Web approach represents a perspective that
organizations can present unified digital identities through thoughtful portal architecture, even
when their underlying systems remain disparate. Rather than accepting the status quo of
disconnected interfaces that force stakeholders to navigate multiple, inconsistent touchpoints,
this framework proposes that web portals can serve as the primary vehicle for eBranding—where
an organization’s digital presence reflects its true character and values. By embedding business
processes, quality management principles, and organizational knowledge directly within portal
structures, the framework suggests that portals can evolve from mere functional interfaces
into authentic digital representations of the organization itself. This approach to web portal
development prioritizes stakeholder experience and organizational coherence, viewing the portal
not as a collection of features but as an expression of how the organization wishes to engage with

its various communities in the digital realm.

2.7. Looking Forward 17

2.7 Looking Forward

This introduction has laid out the core problems of enterprise software fragmentation and
presented the Spin the Web vision as a solution. But how does this vision translate from an
abstract concept into a concrete digital entity? How can a web portal truly become a "virtualized

company"?

The next chapter explores this concept in depth, detailing how the project’s components work in

concert to transform complex business structures into a tangible, unified digital experience.

18

Chapter 2. Introduction to Enterprise Portal Challenges

Chapter 3

Web Portals as Virtualized Companies

"The future belongs to organizations that can turn today’s information into tomorrow’s
insight.”

— Unknown

The concept of web portals as virtualized companies represents a fundamental shift in how
we think about enterprise digital presence. Rather than maintaining separate interfaces for
different stakeholders, a virtualized company presents a unified, role-based digital environment

that encompasses all aspects of business interaction.

3.1 Understanding Virtualized Companies

A virtualized company is more than just a website or even a traditional web portal. It is a
comprehensive digital representation of the entire organization, providing role-specific access to

all business functions, data, and processes through a single, coherent interface.
Web portals functioning as virtualized companies exhibit several defining characteristics:

Unified Access Point : All organizational functions are accessible through a single portal, elimi-
nating the need for users to navigate multiple systems or interfaces.

Role-Based Personalization : FEach user sees only the information, tools, and functions relevant
to their role[s] within the organization, whether they are employees, customers, suppliers,
or partners.

Bi-directional Data Flow : Users can both consume and contribute data, participating actively
in business processes rather than simply viewing static information.

Dynamic Content Assembly : The portal dynamically assembles content and functionality based
on user context, current business state, and real-time data from multiple sources.

Process Integration : Business processes flow seamlessly across traditional departmental bound-
aries, with the portal orchestrating multi-step workflows that may involve multiple stake-
holders.

3.2 The Multi-Audience Challenge

Traditional enterprise software solutions are typically designed for specific user groups or business

functions. A virtualized company portal must serve a much more diverse audience:

19

20 Chapter 3. Web Portals as Virtualized Companies

3.2.1 Internal Stakeholders

Executives and Management : Require high-level dashboards, strategic analytics, and company-
wide performance metrics

Department Heads : Need departmental dashboards, resource management tools, and cross-
departmental collaboration features

Employees : Access to task management, communication tools, company resources, and role-
specific applications

IT and System Administrators : System monitoring, user management, configuration tools, and

technical diagnostics

3.2.2 External Stakeholders

Customers : Product catalogs, ordering systems, support portals, account management, and
service tracking

Suppliers and Vendors : Supply chain interfaces, order management, quality reporting, and
vendor portals

Partners and Distributors : Partner resources, marketing materials, commission tracking, and
collaboration tools

Regulatory Bodies : Compliance reporting, audit trails, and required documentation

Investors and Stakeholders : Financial reports, governance information, and strategic communi-

cations

3.3 Business Function Integration

A truly virtualized company portal integrates all major business functions into a cohesive whole:

3.3.1 Core Business Areas

Sales and Marketing : Lead management, opportunity tracking, campaign management, cus-
tomer analytics, and marketing automation

Operations and Production : Manufacturing schedules, quality control, inventory management,
and supply chain coordination

Finance and Accounting : Financial reporting, budgeting, expense management, and financial
analytics

Human Resources : Employee management, recruitment, performance tracking, and organiza-
tional development

Customer Service : Support ticket management, knowledge bases, customer communication,
and service analytics

Research and Development : Project management, resource allocation, intellectual property

management, and innovation tracking

3.3.2 Cross-Functional Processes

The virtualized company portal excels at supporting processes that span multiple departments:

3.4. Technical Architecture Implications 21

e Order-to-Cash: From initial customer inquiry through order fulfillment and payment process-
ing

e Procure-to-Pay: From supplier selection through purchase order management and invoice
processing

o Hire-to-Retire: Complete employee lifecycle management from recruitment to retirement

o Idea-to-Market: Innovation management from concept development through product launch

« Issue-to-Resolution: Comprehensive problem management across all business areas

3.4 Technical Architecture Implications

Supporting a virtualized company model requires sophisticated technical architecture:

3.4.1 Data Integration Requirements

e Real-time integration with multiple backend systems
e Data transformation and normalization across different formats
e Master data management to ensure consistency

o Event-driven architecture for real-time updates

3.4.2 Security and Access Control

e Fine-grained role-based access control
e Dynamic permission evaluation
o Audit trails for all user actions

e Data encryption and secure communication

3.4.3 Performance and Scalability

« Efficient caching strategies
e Load balancing across multiple servers
e Asynchronous content loading

o Database optimization and command performance

3.5 Benefits of the Virtualized Company Model

Organizations that successfully implement virtualized company portals typically experience

significant benefits:

3.5.1 Operational Efficiency

e Reduced training time for new users
o Faster task completion through unified interfaces
e Elimination of duplicate data entry

e Streamlined approval processes

22 Chapter 3. Web Portals as Virtualized Companies

3.5.2 Improved User Experience

Single sign-on across all functions

Consistent user interface and navigation

Personalized content and functionality

Mobile-responsive design for anywhere access

3.5.3 Business Intelligence

o Comprehensive analytics across all business functions
¢ Real-time dashboards and reporting
e Cross-departmental visibility

e Data-driven decision making

3.5.4 Competitive Advantage

o Faster response to market changes
e Improved customer service and satisfaction
¢ Enhanced partner and supplier relationships

¢ Greater organizational agility

3.6 Implementation Challenges

While the benefits are significant, implementing a virtualized company portal presents several

challenges:

3.6.1 Technical Complexity

o Integration with legacy systems
e Managing diverse data formats and sources
¢ Ensuring system reliability and uptime

¢ Maintaining security across all functions

3.6.2 Organizational Change

¢ Resistance to changing established workflows
e Training requirements across diverse user groups
e Coordinating across multiple departments

o Managing stakeholder expectations

3.6.3 Ongoing Maintenance

¢ Keeping pace with business changes
¢ Maintaining data quality and consistency
e Performance optimization and scaling

e Security updates and compliance

3.7. The Spin the Web Approach 23

3.7 The Spin the Web Approach

Spin the Web addresses these challenges through its unique approach:

WBDL Language : Provides a declarative way to define complex portal structures and relationships

Web Spinner Engine : Handles the runtime complexity of role-based content delivery and system
integration

Modular Architecture : Enables incremental implementation and easy maintenance

Developer-Focused Tools : Provides professional-grade tools for enterprise developers

3.8 The Portal as the Company’s Soul

Ultimately, a web portal built with the Spin the Web philosophy becomes more than just a
digital tool; it becomes the natural container for the company’s quality management principles

and manuals. It is the living embodiment of the corporate soul.

By defining not only what a company does but also how it does it, the portal transforms abstract
procedural documents into interactive, enforceable workflows. It ensures that the company’s
core principles are not just written down, but are actively practiced and experienced by every
stakeholder in every interaction. This fusion of documentation and execution is what elevates a

web portal from a simple utility to the very heart of the virtualized company.

24

Chapter 3. Web Portals as Virtualized Companies

Chapter 4

Architecture Overview

"Architecture is about the important stuff. Whatever that is.”
— Ralph Johnson

Spin the Web is built upon a core architectural foundation that enables the creation of sophisti-
cated enterprise web portals. This architecture is composed of three distinct but complementary
components: the Blueprint, the Engine, and the Workshop. Together, they transform complex

business requirements into unified, role-based digital experiences.

4.1 The Core Components

The architecture consists of three core components:

Webbase Description Language (WBDL) : A declarative language for modeling complex web portal
structures, data relationships, and business logic

Web Spinner Engine : A runtime engine that interprets WBDL specifications and delivers dynamic,
role-based content

Spin the Web Studio : A specialized webbaselet for creating, editing, and managing webbase

definitions with in-place editing capabilities

4.2 The Blueprint: Webbase Description Language (WBDL)

WBDL forms the declarative foundation of the entire system. Unlike traditional approaches that
mix structure, presentation, and logic, WBDL provides a clean separation of concerns through a

hierarchical, schema-based approach.

4.2.1 Core Principles

Declarative Definition : Developers describe what the portal should do, not how it should do it

Data-Driven Structure : Portal elements are defined in terms of their data relationships and
business semantics

Role-Based Access : Security and personalization are built into the language specification

Technology Agnostic : WBDL abstracts away implementation details, focusing on business require-

ments

25

26 Chapter 4. Architecture Overview

4.2.2 Key Components

WBDL defines several fundamental element types:

STWSite : The root element containing global configuration, datasources, and site-wide settings

STWArea : Logical groupings of related functionality, typically corresponding to business
domains

STWPage : Individual pages within areas, defining layout sections and content organization

STWContent : Atomic content elements that encapsulate data queries, business logic, and

presentation rules

4.2.3 Benefits of the Declarative Approach

e Maintainability: Changes to business requirements can be implemented through configuration
rather than code changes

¢ Consistency: Standard element types ensure consistent behavior across the entire portal

¢ Reusability: Content elements can be reused across multiple pages and contexts

o Testability: Declarative definitions are easier to validate and test than imperative code

4.3 The Engine: Web Spinner

The Web Spinner Engine serves as the runtime foundation that brings WBDL specifications to life.
It handles the complex orchestration of data retrieval, security enforcement, and content delivery

that makes dynamic portals possible.

4.3.1 Core Responsibilities

Configuration Interpretation : Parsing and optimizing WBDL documents for runtime execution

Request Routing : Mapping incoming URLs to appropriate portal elements based on the webbase
structure

Security Enforcement : Implementing role-based access control and content filtering

Data Integration : Orchestrating queries across multiple datasources and systems

Content Assembly : Dynamically composing responses based on user context and permissions

4.3.2 Runtime Architecture

The Web Spinner operates through several key subsystems:

Webbase Loader : Loads and parses WBDL documents into optimized in-memory structures
Authorization Engine : Evaluates role-based visibility rules in real-time

Command Processor : Handles WBPL placeholder resolution and datasource command execution
Content Cache : Manages caching strategies for improved performance

Session Manager : Maintains user state and authentication information

4.3.3 Performance and Scalability

e Asynchronous Processing: Content elements are fetched independently for optimal loading

times

4.4. The Workshop: Spin the Web Studio 27

o Intelligent Caching: Multi-level caching strategies reduce datasource load
o Connection Pooling: Efficient resource management for database and API connections

e Horizontal Scaling: Support for load-balanced, multi-instance deployments

4.4 The Workshop: Spin the Web Studio

The Spin the Web Studio is a specialized webbaselet designed for editing and managing webbase
definitions. As a webbaselet, it can be seamlessly integrated into any webbase to provide in-place
editing capabilities, enabling professional developers to create and maintain complex portal

structures efficiently.

The Studio is dynamically added to the portal webbase when users with developer permissions
log in, remaining dormant until activated via the Alt+F12 keyboard shortcut. Upon activation,
it transforms the portal interface into a development environment that includes action bars,
side panels, status displays, and a main editing area where the live portal remains visible in a

persistent browser tab.

4.4.1 Development Capabilities

Visual Design Interface : Graphical tools for designing portal structure and navigation through
an interactive webbase hierarchy displayed in the side bar

Code Assistance : Intelligent editing support for WBDL and WBPL syntax with multi-tab file editing
capabilities

Data Source Integration : Tools for connecting to and testing various data sources, accessible
through portal primary folder contents

Preview and Testing : Real-time preview capabilities with role simulation in the persistent
browser tab that displays the live portal

Version Control : Integration with standard source control systems through the side bar source
control panel

Comprehensive Search : Unified search capabilities across both webbase definitions and folder
contents

Integrated Debugging : Built-in debugging tools for WBPL queries and webbaselet execution

4.4.2 Professional Developer Focus

Unlike low-code/no-code platforms, the Studio is designed specifically for professional developers:

e Full Control: Complete access to all WBDL features and capabilities

o Extensibility: Support for custom components and specialized functionality

Integration: Seamless integration with standard development workflows

e Performance Tools: Profiling and optimization capabilities for enterprise-scale deployments

4.5 Architectural Interactions

The Blueprint, Engine, and Workshop work together through well-defined interfaces and protocols:

28 Chapter 4. Architecture Overview

4.5.1 Design-Time to Runtime

1. Developers use the Studio to create and modify webbase definitions
2. WBDL documents are saved and versioned using standard development practices
3. The Web Spinner Engine loads updated webbase definitions and applies changes

4. Changes take effect immediately without requiring system restarts

4.5.2 Runtime Operations

User requests arrive at the Web Spinner Engine
The engine consults the in-memory webbase structure to route the request
Authorization rules defined in WBDL are evaluated against user roles

Appropriate STWContent elements are identified and executed

AN e

Responses are assembled and delivered to the client

4.5.3 Feedback Loops

¢ Runtime performance metrics inform Studio optimization recommendations
e User behavior analytics guide design decisions
e Error logs and debugging information flow back to the development environment

o A/B testing capabilities enable data-driven design refinements

4.6 Architectural Benefits

This architectural model provides several key advantages over traditional portal development

methods:

4.6.1 Separation of Concerns

o Business logic is separated from presentation concerns
e Security policies are defined declaratively rather than embedded in code
o Data access patterns are standardized and centrally managed

o Ul rendering is handled consistently across all portal components

4.6.2 Development Efficiency

Faster development cycles through declarative configuration

Reduced debugging time due to standardized runtime behavior

Easier maintenance through centralized configuration management

Lower training requirements for new team members

4.6.3 Enterprise Scalability

Proven performance characteristics for large-scale deployments
e Built-in support for high availability and disaster recovery

Comprehensive monitoring and operational management capabilities

Integration with enterprise identity and security systems

4.7. Implementation Patterns 29

4.7 Implementation Patterns

Common implementation patterns emerge when working with this architecture:

4.7.1 Incremental Development

1. Start with core site structure and basic navigation
2. Add key business areas one at a time
3. Implement critical content elements first

4. Gradually add advanced features like real-time updates and complex workflows

4.7.2 Modular Design

e Design STWContent elements as reusable components
o Create area-specific templates for consistent user experience

Develop shared datasource configurations for common data patterns

¢ Build libraries of common UI components and layouts

4.7.3 Testing and Validation

e Use Studio preview capabilities for immediate design feedback
e Implement automated testing for critical business logic
e Perform role-based testing to validate security configurations

e Conduct performance testing under realistic load conditions

4.8 Looking Forward

With the high-level architecture of the Blueprint, Engine, and Workshop defined, our focus must
now turn to the underlying engineering. How are these components built? What are the technical

specifications of the languages and the internal mechanics of the runtime?

The next part of this book is dedicated to a deep dive into the framework’s implementation. We
will explore the complete specifications of the languages and the architectural details of the Web

Spinner engine.

30

Chapter 4. Architecture Overview

Part 11

The Framework

31

Introduction to Part ll: The Framework

"The limits of my language mean the limits of my world."

— Ludwig Wittgenstein

This part opens the hood of the Spin the Web framework examining its specifications. We will
dissect the core components introduced in the architecture overview: the languages that serve as
the framework’s instruction set, the modular design that enables scalability, and the mechanics

of the engine that brings it all to life.

Chapter 5: The WBDL Language (chapter 5) — Provides a comprehensive introduction to the
Webbase Description Language, including its JSON Schema definitions, element hierarchy,
and practical usage patterns.

Chapter 6: The WBPL Language (chapter 6) — Explores the Webbase Placeholders Language,
which enables dynamic content injection and template-based portal generation.

Chapter 7: The WBLL Language (chapter 7) — Defines the Webbase Layout Language, presen-
tation layer, tokens, helpers, and compilation model used to render data into accessible,
responsive HTML.

Chapter 8: Webbase and Webbaselets (chapter 8) — Examines the modular component system
that allows for reusable portal elements and cross-platform integration.

Chapter 9: The Web Spinner (chapter 9) — Details the runtime engine that processes WBDL
specifications and generates dynamic web portals, including its architecture, processing
pipeline, and performance characteristics.

Chapter 10: The Spin the Web Studio (chapter 10) — Introduces the integrated development
environment for building and managing webbases.

Chapter 11: Technology Stack and Implementation (chapter 11) — Documents the concrete tech-
nology stack (Deno/TypeScript) of the reference Web Spinner, showing how the theoretical

mechanics are realized in a working system.

Mastering these specifications is the first step toward building robust, enterprise-grade portals.
This section serves as the definitive reference for the framework’s "Blueprint," "Engine," and
"Workshop."

33

34

Chapter 5

Webbase Description Language
(WBDL)

"The limits of my language mean the limits of my world."

— Ludwig Wittgenstein
WBDL is formally defined using the standard JSON Schema.

5.1 WBDL Ecosystem

While WBDL serves as the declarative language for describing web portals, it operates within a

comprehensive ecosystem of associated technologies and APIs that enhance its capabilities:

5.1.1 Layout API

WBDL includes an associated Layout API that provides programmatic control over content presen-
tation and styling. This API works in conjunction with the declarative STWLayout elements to

enable:

e Dynamic layout adjustments based on content type and user preferences
e Responsive design patterns that adapt to different screen sizes and devices
o Integration with external CSS frameworks and design systems

e Runtime modification of layout properties based on data characteristics

The Layout API ensures that content presentation remains consistent across different contexts

while allowing for necessary flexibility in complex enterprise environments.

5.1.2 Text Preprocessor

The WBDL text preprocessor is a powerful engine that processes textual content before rendering,

enabling:

o Placeholder substitution using the Webbase Placeholders Language (WBPL)
e Localization and internationalization support
e Dynamic text generation based on context and user data

o Integration with external content management systems

35

36 Chapter 5. Webbase Description Language (WBDL)

o Markdown and other markup language processing

This preprocessor is particularly crucial for the command attributes in STWContent elements, where

it replaces placeholders with actual values from various sources before command execution.

5.1.3 Visual Component Library (VCL)

The Visual Component Library provides a standardized set of Ul components that correspond to

the different content categories and subtypes. The VCL ensures:

o Consistent visual presentation across different portal implementations

Accessibility compliance through standardized component behavior

Cross-platform compatibility for various front-end frameworks

Extensibility for custom component development

5.1.4 Content Management Integration

WBDL is designed as a fundamental language for Content Management Systems (CMS), providing:

e Structured content definition that separates presentation from data

Version control capabilities for portal configurations

Workflow management for content approval processes

Integration points for external content repositories

This integration capability makes WBDL particularly suitable for enterprise environments where

content management workflows are critical to business operations.

5.2 Spin the Web Studio

The third and final component of Spin the Web is the Spin the Web Studio. Alongside the WBDL
and the Web Spinner, it completes the framework. The Spin the Web Studio is a specialized
webbaselet engineered for editing webbases. To use it, you simply add the webbaselet to the

webbase you wish to edit, enabling direct, in-place modification.

5.3 The STWEIement Base

WBDL defines a base element, STWElement, from which all other elements inherit. JSON Schema
definitions for WBDL elements are in Appendix A (see Appendix: WBDL JSON Schema Reference).

5.3.1 Property Description

_id : A unique identifier for the element (GUID).
type : The specific type of the element. Can be one of 'Site’, "Area’, ’Page’, or ’Content’.
name : A localizable name for the element. This is a JSON object where keys are language
codes (e.g., "en", "it") and values are the translated strings. Example: {
—) : }
slug : A localizable, URL-friendly version of the name. It is a JSON object with the same

structure as name. Slugs should contain only lowercase letters, numbers, and hyphens.

5.4. WBDL Element Types 37

keywords : Localizable keywords for SEO. Follows the same structure as name.

description : A localizable description of the element. Follows the same structure as name.

visibility : Defines the visibility rules for the element based on user roles. It contains a set of
rules, where each rule assigns true (visible) or false (not visible) to a specific role. If a
rule for a role is not defined (is null), the visibility is determined by checking the parent
element’s visibility rules. This hierarchical check continues up to the root element. If no
rule is found, the element is not visible by default.

children : A list of child STWElement objects.

5.4 WBDL Element Types

This section describes the specialized element types available in WBDL.

5.4.1 STWSite

STWSite is a singleton element that represents the entire web portal. It inherits from STWElement

and acts as the root element of the portal structure.

Property Description

langs : A list of supported languages for the site. The first of the list is the default site language.
datasources : Defines the data sources used by the portal.
mainpage : The GUID of the STWPage that serves as the main entry point for the site.

version : A version string for the site.

Data Sources and Groups

The datasources element within STWSite provides a flexible framework for defining how the portal
connects to and manages external data systems. Beyond simple connection definitions, WBDL

supports advanced data organization concepts:

Data Source Configuration : Each data source can be configured with specific connection pa-
rameters, authentication credentials, and command optimization settings. Supported data
source types include:

» Relational databases (SQL-based)
o NoSQL databases (document, key-value, graph)
e« REST APIs and web services
« File-based data sources (CSV, JSON, XML)
o Enterprise systems (ERP, CRM, HRM)
Data Groups : Data sources can be organized into logical groups that facilitate:
e Access control and security policies
e Performance optimization through connection pooling
e Load balancing across redundant data sources
e Backup and failover configurations

¢ Administrative grouping for different business units

38 Chapter 5. Webbase Description Language (WBDL)

Accessibility Integration : The data source framework includes provisions for accessibility com-
pliance:
e Metadata enrichment for screen readers and assistive technologies
o Alternative data representations for different accessibility needs
e Command result formatting that supports accessibility standards

o Integration with accessibility frameworks and tools

This comprehensive approach to data source management ensures that WBDL can integrate
seamlessly with complex enterprise data environments while maintaining accessibility and security

standards.

5.4.2 STWArea

STWArea represents a logical grouping of pages, analogous to a chapter in a book. It extends the
base STWElement.

Property Description

mainpage : The GUID of the STWPage that serves as the main entry point for this area.

version : A version string for the area.

5.4.3 STWPage

STWPage represents a single page in the portal. It extends the base STWElement but restricts its

children to only STWContent elements.

5.4.4 STWContent

STWContent represents a piece of content on a page. It extends the base STWElement but is not

allowed to have any children. It adds several attributes for data binding and layout control.

Property Description

type : Overrides the base element’s type and is fixed to "Content".

subtype : Specifies the type of content to be rendered, which determines the component used on
the front-end. Possible values include Text, Form, Table, Tree, Calendar, and Breadcrumbs.

cssClass : An optional CSS class to apply to the content element for styling.

section : The name of the page section where this content should be rendered (e.g., "header",
"main", "sidebar").

sequence : A number that determines the order of content within a section.

dsn : The "data source name," which identifies a specific data source configured in the STWSite

element.

5.4. WBDL Element Types 39

command : The command to be executed against the specified data source. Before execution,
the command text is processed by the Webbase Placeholders Language (WBPL) processor.
This processor replaces placeholders within the command with values sourced from several
locations: the params attribute, the URL querystring, session variables, global variables,
and HTTP headers. After this substitution, the resulting command is executed by the
data source using its native language (e.g., SQL for a relational database, or JSONata if
the data source is a JSON-based API).

params : A string containing parameters for the command, formatted as a standard querystring
(e.g., keyl=valuel8key2=value2).

layout : The STWLayout element that defines how the fetched data should be rendered.

Content Categories

Contents are the fundamental elements of WBDL and represent interactive data units that fall into

four distinct categories, each serving a specific purpose in the portal’s user interface:

Sensorial Contents : These render data in human-readable formats for information consumption
and input. They include:
o Free text displays
o Forms for data input
o Lists and tables for structured data presentation
e Plots and charts for data visualization
o Maps for geographical data
e Timelines for temporal data
o Media elements (images, videos, audio)
Navigational Contents : These render data as interactive links and navigation elements, facili-
tating movement through the portal structure:
o Menus (primary and secondary navigation)
o Table of contents (TOC)
e Breadcrumbs for hierarchical navigation
o Slicers for data filtering
o Image maps with clickable regions
o Pagination controls
Organizational Contents : These wrap and organize other contents in structured manners,
providing logical grouping and presentation:
e Tabs for content organization
e Calendars for date-based content
e Trees for hierarchical data
o Graphs for relationship visualization
e Accordions for collapsible sections
e Carousels for sequential content display
Special Contents : These provide specialized functionality and shortcuts:
o Shortcuts to frequently accessed content

¢ Code displays with syntax highlighting

40 Chapter 5. Webbase Description Language (WBDL)

e Embedded widgets and components

e Custom functionality modules

All content types explicitly declare or request the data they interact with, and their rendering
behavior is determined by their category and specific subtype. The content categorization ensures
consistency in user interface patterns and enables the Web Spinner to apply appropriate rendering

logic and security policies.

5.4.5 STWContentWithOptions

STWContentWithOptions is similar to STWContent, it contains a list of option elements (GUIDs).
This type is useful for scenarios like menus and tabs where the content is sourced from other

elements.

Property Description

subtype : Specifies the type of content to be rendered. Possible values include Menu, Tabs, and

Accordion.

5.5 Looking Forward

A static portal, however well-structured, has limited utility in a dynamic business environment.
The true power of an enterprise portal lies in its ability to present real-time, contextualized data.
But how do we bridge the gap between the static structure of WBDL and the dynamic data living

in enterprise systems?

The next chapter introduces the Webbase Placeholders Language (WBPL), a specialized language
designed to embed dynamic queries and data-driven logic directly within your WBDL definitions.

We will explore how WBPL turns your static templates into living, breathing documents.

Chapter 6

Webbase Placeholders Language
(WBPL)

"The real problem is not whether machines think but whether men do."
— B.F. Skinner

The Webbase Placeholders Language (WBPL) is a string processing language designed for creating
dynamic, data-driven queries. It works by taking a template string and a map of placeholders,
then producing a final string by substituting placeholders and conditionally including or excluding

parts of the template based on whether the placeholders have values.

6.1 Core Functionality
Here is a detailed breakdown of WBPL functionality:

6.1.1 Placeholder Syntax

WBPL identifies placeholders using an @ symbol. The syntax supports different forms, such as @,
@e, and e@ee, which may have distinct meanings. Placeholders can be used directly (unquoted) or

enclosed in single or double quotes.

6.1.2 Substitution Mechanisms

Simple Substitution : For unquoted placeholders like @name, the engine directly replaces them
with the corresponding value from the placeholders map.

Quoted Substitution : For quoted placeholders like ’@name’, the engine replaces them with the
value, automatically ensuring the value is correctly quoted and that any internal quotes
are escaped. This is crucial for safely embedding string values in languages like SQL.

List Expansion : A special syntax exists for quoted placeholders followed by an ellipsis (...),
such as ’@ids’...’. This is designed to expand a comma-separated value into a properly
quoted, comma-separated list (e.g., expanding a string ”1,2,3" into *17,’2’,73”). This is

particularly useful for generating SQL IN clauses.

41

42 Chapter 6. Webbase Placeholders Language (WBPL)

6.1.3 Conditional Blocks

The language supports two types of conditional blocks that control whether a piece of text is

included in the final output.
Curly Braces {...}

Text inside curly braces is included only if at least one placeholder within it is successfully
replaced with a non-empty value. If all placeholders inside are empty or non-existent, the entire
block (including the braces) is removed. This is useful for including optional text that depends

on a value being present.

Square Brackets [...]

This block behaves similarly to curly braces, but with an added feature for cleaning up command
syntax. If the block is removed because its placeholders are empty, the engine will also intelligently
remove a single adjacent keyword (like AND, OR, WHERE). This is designed to handle optional

conditional clauses in SQL.
For example, in SELECT * FROM users WHERE 1=1 [AND user_id = @id], the AND keyword and the

entire bracketed expression will be removed if @id has no value.

6.1.4 Escaping

o The language respects escaped at-symbols (\@), treating them as literal @ characters rather
than the start of a placeholder.
e It correctly handles and escapes quotes within values during substitution to prevent syntax

errors or potential injection vulnerabilities.

6.2 Security Features

In essence, WBPL is a security-conscious templating engine tailored for generating dynamic queries

and other text formats where parts of the content are conditional. Key security features include:

o Automatic quote escaping to prevent SQL injection attacks
e Input validation and sanitization
¢ Safe handling of user-provided parameters

o Proper encoding for different target languages (SQL, JSON, etc.)

6.3 Usage Examples
6.3.1 Basic Placeholder Substitution

SELECT * FROM users WHERE username = 'Q@username'

Listing 6.1: Simple WBPL Substitution

With placeholder username = "john_doe"”, this becomes:

6.4. Integration with WBDL 43

SELECT * FROM users WHERE username = 'john_doe'

6.3.2 Conditional Command Clauses

SELECT x FROM products
WHERE 1=1

[AND category = '@category']
[AND price >= @min_pricel]

[AND price <= @max_price]

Listing 6.2: WBPL Conditional Blocks

If only category = "electronics” is provided, this becomes:

SELECT * FROM products
WHERE 1=1

AND category = 'electronics'

6.3.3 List Expansion for IN Clauses

SELECT * FROM orders WHERE status IN ('@statuses'...)

Listing 6.3: WBPL List Expansion

With placeholder statuses = "pending,shipped,delivered”, this becomes:

SELECT * FROM orders WHERE status IN ('pending', 'shipped', 'delivered')

6.4 Integration with WBDL

WBPL is primarily used within STWContent elements in WBDL documents. The command attribute of
an STWContent element contains a template string that is processed by the WBPL engine before

being executed against the specified datasource.
The placeholder values are sourced from multiple locations in order of precedence:

The params attribute of the STWContent element
URL querystring parameters
Session variables (user context, roles, preferences)

Global variables (site configuration, system settings)

Gt W=

HTTP headers (for device type, language preferences, etc.)

44 Chapter 6. Webbase Placeholders Language (WBPL)

6.5 Performance Considerations

The WBPL processor is optimized for high-performance scenarios:

o Template parsing is cached to avoid repeated compilation
e Placeholder resolution is optimized for minimal overhead
e Command plans may be cached when placeholder patterns are stable

e Security validation is performed efficiently without sacrificing safety

6.6 Looking Forward

While WBDL provides the structure and WBPL injects dynamic data, a critical question remains:
how do we manage the complexity of a large-scale enterprise portal? How do we ensure that
different parts of the portal can be developed, maintained, and deployed independently without

causing system-wide disruptions?

The next chapter introduces the concepts of webbases and webbaselets—the architectural solution
for modularity and scalability in the Spin the Web ecosystem. We will see how these concepts

allow for a "divide and conquer" approach to portal development.

Chapter 7

Webbase Layout Language (WBLL)

"Simplicity is the ultimate sophistication."

— Leonardo da Vinci

In WBDL, the portal is specified macroscopically: from Site to Area to Page, and for each Page
the set of Contents. For every Content, WBDL declares its subtype (for example: table, calendar,
tree, menu, form), the datasource, and the command to run. WBLL operates microscopically,

describing how the queried data should be rendered within that Content’s shape.

7.0.1 Data Context and Field Cursor

It is the responsibility of the WBDL content definition to command data. The result is an ordered

recordset, where both the field names and their sequence are important for rendering.

The WBLL interpreter maintains a field cursor that tracks the current position within the
recordset fields. Many tokens operate on the field at the current cursor position if no explicit
field name is provided; tokens that specify a field name use that field without moving the cursor.
Some tokens may also vary their behavior based on the content subtype; this is documented with

each token where relevant.

Cursor movement rule By convention, the field cursor advances if and only if a token implicitly
consumes the active field (i.e., it reads a field value without naming a field explicitly). Tokens

that only render constants, or that reference a field by name, do not move the cursor.

o Cursor-advancing (implicit field): a token used without a field name consumes the active field
and advances the cursor.
Example: h renders <input type="hidden” name="<active>" value="<value>"> and advances.
» Non-advancing (explicit field): a token that names a field uses that field but leaves the cursor
unchanged.
Example: h(’type;area’) renders <input type="hidden” name="type"” value="area"> and
does not advance.
o Non-consuming: tokens that render only literals or structural markup do not touch the cursor.

Example: t(’Hello World!’) does not advance.

45

46 Chapter 7. Webbase Layout Language (WBLL)

Implementations typically mark a token as having consumed the active field only if it bound to

it implicitly; explicit bindings and literal-only tokens leave the cursor position intact.

This chapter establishes the presentation-layer contracts. In the next chapters we detail modular

composition (chapter 8) and the runtime engine (chapter 9).

7.0.2 Language Internals

At its core, WBLL is a compact, token-based templating language. Unlike tag-based languages
like HTML, WBLL uses a sequence of single-character mnemonics and special commands to
define the structure and appearance of content. This design prioritizes conciseness and efficient

processing.
The rendering process involves two main stages:

1. Lexing (Tokenization): The WBLL source string is first parsed by a lexer, which uses a
comprehensive regular expression to break the text into a series of tokens. Each token
represents a specific layout element, such as a link (a), a button (b), a form input (e), or
a simple text block (t). The lexer also captures arguments, attributes, and parameters
associated with each token. Any unrecognized characters result in a syntax error.

2. Compilation and Rendering: The resulting array of tokens is then compiled into a dynamic
JavaScript render function. This function is specifically generated to produce HTML from the
token sequence. When executed, it iterates through the tokens, merges data from records and
session placeholders, and constructs the final HTML string. This just-in-time compilation

allows for highly efficient rendering, as the logic is tailored precisely to the given layout.

7.0.3 Token Reference

For the complete, uniform catalog of tokens (syntax, description, and examples), see Appendix
B.

Chapter 8

Webbase and Webbaselets

"The whole is more than the sum of its parts.”
— Aristotle

A complete WBDL document, representing a full portal, is called a webbase. A key requirement
for a valid webbase is that it must contain exactly one STWSite element, which serves as the root

of the entire structure.

However, it is also possible to create smaller, modular WBDL files called webbaselets. A webbaselet
is a WBDL document that does mot contain an STWSite element. Instead, its root element must be
an STWArea. webbaselets are designed to be portable fragments that can be imported or included

within a larger webbase.

This modularity ensures that the portal can evolve without requiring a monolithic update,

promoting agility and long-term maintainability.

8.1 Webbase Structure

A webbase represents a complete, self-contained web portal. It includes:

Site Configuration : The root STWSite element containing global settings, supported languages,
and datasource definitions

Navigation Hierarchy : A complete tree of areas, pages, and content elements that define the
portal structure

Security Model : Comprehensive visibility rules and role-based access controls throughout the
hierarchy

Data Integration : Datasource configurations and command templates for dynamic content

generation

8.1.1 Webbase Example Structure

47

48 Chapter 8. Webbase and Webbaselets

3

Listing 8.1: Basic Webbase Structure in JSON

8.1.2 Webbaselet Definition

A webbaselet is a valid WBDL document whose root element is an STWArea.

18

Listing 8.2: Example of a Webbaselet in JSON

8.1.3 Namespace Isolation

Each webbaselet can define its own namespace by adding a namespace property to the root STWArea

element.

8.2. Development Workflow 49

Listing 8.3: Webbaselet with Namespace

When this webbaselet is integrated, the final URL for the page could be resolved to

/human-resources/directory, with the engine managing any potential conflicts.

8.2 Development Workflow

The webbase/webbaselet architecture enables sophisticated development workflows:

8.2.1 Modular Development

Different teams can work on separate webbaselets simultaneously:

e HR team develops employee self-service webbaselet
o Sales team develops customer portal webbaselet
e IT team develops system administration webbaselet

e Each team can test independently before integration

8.2.2 Versioning and Release Management

webbaselets support independent versioning:

e Each webbaselet maintains its own version number
o Compatible versions can be mixed within a single webbase
¢ Rollback capabilities for individual webbaselets

o A/B testing of different webbaselet versions

8.2.3 Testing and Quality Assurance

Modular architecture improves testing:

e Unit testing of individual webbaselets
o Integration testing of webbaselet combinations
o Isolated regression testing when updating specific webbaselets

o Performance testing of high-traffic webbaselets

8.3 Governance and Security

The modular architecture supports enterprise governance requirements:

8.3.1 Access Control

webbaselets can implement their own security models:

¢ Role-based permissions specific to webbaselet functionality
e Integration with enterprise identity providers

o Audit trails for webbaselet-specific actions

50 Chapter 8. Webbase and Webbaselets

e Data loss prevention for sensitive webbaselets

8.3.2 Compliance

Different webbaselets can meet different compliance requirements:

e GDPR compliance for EU customer data webbaselets
¢ SOX compliance for financial reporting webbaselets
e« HIPAA compliance for healthcare-related webbaselets

e Industry-specific regulations for specialized webbaselets

8.3.3 Change Management

webbaselet deployment can be controlled through governance processes:

e Approval workflows for webbaselet updates
o Automated testing before webbaselet deployment
¢ Rollback procedures for problematic webbaselets

e Change impact analysis for webbaselet modifications

8.4 Performance and Scalability

The modular architecture provides performance benefits:

8.4.1 Selective Loading

The Web Spinner can optimize performance by:

o Loading only webbaselets relevant to the current user’s roles
e Lazy loading of webbaselets when first accessed
e Caching frequently used webbaselets in memory

e Unloading unused webbaselets to conserve resources

8.4.2 Distributed Deployment

webbaselets can be deployed across multiple servers:

o High-traffic webbaselets on dedicated servers
e Geographic distribution of region-specific webbaselets
o Load balancing based on webbaselet usage patterns

o Failover capabilities for critical webbaselets

8.5 Future Evolution

The webbase/webbaselet architecture is designed to support future enhancements:

8.5.1 Marketplace Integration

A future ecosystem could include:

8.6. Looking Forward 51

o Third-party webbaselet marketplace
o Certified webbaselets from trusted vendors
e Community-contributed open-source webbaselets

o Enterprise webbaselet repositories

8.5.2 Al-Driven Development

Future tools could provide:

e Automated webbaselet generation from requirements
e Intelligent webbaselet recommendations based on usage patterns
e Automatic optimization of webbaselet performance

e Predictive analytics for webbaselet maintenance

8.6 Looking Forward

We have now defined the languages (WBDL, WBPL, WBLL) and the modular architecture (webbaselets)
that form the static blueprint of a Spin the Web portal. But how is this blueprint brought to
life? What is the machinery that parses these definitions, executes queries, enforces security, and

renders the final user interface?

The next chapter provides a detailed look at the Web Spinner Engine, the high-performance
runtime that serves as the heart of the Spin the Web project. We will explore its internal

architecture, from request handling to final HT'ML rendering.

52

Chapter 8. Webbase and Webbaselets

Chapter 9

The Web Spinner

"The web of our life is of a mingled yarn, good and ill together."
— William Shakespeare

WBDL is processed by a server-side engine called the Web Spinner. In a direct analogy to how a
client-side web browser renders HTML into a user-facing webpage, the Web Spinner interprets
WBDL descriptions to generate and manage the web portal on the server. It is the runtime engine
of the project, complemented by the Spin the Web Studio, which serves as the design-time tool
for creating and modifying the webbase itself. This architecture allows for dynamic, data-driven

portal generation based on the WBDL specification.

When the Web Spinner starts, it loads the webbase (in JSON format) into memory. This webbase
is transformed into an optimized, in-memory object, allowing for fast access and manipulation of

the portal’s structure.

9.1 Primary Roles and Responsibilities

The Web Spinner’s primary roles are routing and content delivery:

1. URL-Based Routing: It maps the incoming URL directly to a webbase object. For example, a
URL like https://portal.acme.com/areaslug/areaslug/pageslug is interpreted as a path to
a specific STWPage element within the webbase hierarchy.

2. Page Composition: When a user requests a page, the Web Spinner acts as the initial router.
It identifies the requested page and its associated STWContent elements. Crucially, it checks
the visibility rules for the page and each content element against the user’s roles. Elements
that are not visible to the user are filtered out and never sent to the client. The spinner then
returns the list of slugs for the visible contents.

3. Asynchronous Content Fetching: The client receives the list of content slugs and pro-
ceeds to request each one asynchronously and individually. For instance, it would request
https://portal.acme.com/areaslug/areaslug/pageslug/contentslug. This approach allows
the main page structure to load quickly while content is fetched in parallel, improving
perceived performance.

4. Dynamic Content: A content element is not limited to rendering data but also managing
data like an API.

93

54 Chapter 9. The Web Spinner

This architecture ensures that the server handles the core logic of structure, routing, and security,
while the client is responsible for the final rendering, leading to a flexible and performant web

portal.

9.2 System Startup and Initialization
When the Web Spinner starts up, it performs several critical initialization steps:

9.2.1 Webbase Loading

The engine loads the complete WBDL document (webbase) from disk, stored in JSON format. This
document contains the entire portal structure, including all areas, pages, content definitions, and

configuration data.

9.2.2 In-Memory Optimization

The loaded webbase is parsed and transformed into an optimized in-memory object graph. This

transformation includes:

e Resolving all GUID references between elements
o Building navigation hierarchies for fast traversal
¢ Pre-compiling visibility rules for rapid role-based filtering

¢ Indexing elements by slug for efficient URL routing

9.2.3 Datasource Configuration

All datasources defined in the STWSite element are initialized and connection pools are established.

This includes databases, REST APIs, file systems, and any other external data providers.

9.2.4 Route Table Generation

A comprehensive routing table is built from the webbase structure, mapping URL patterns to

specific STWPage and STWContent elements.

9.3 User Session Management

The Web Spinner maintains stateful user sessions to manage authentication, authorization, and

personalization:

9.3.1 Session Establishment

When a user first accesses the portal, a new session is created with a unique identifier, guest
is set as the session user (guest has is assigned the guests role). Sessions are maintained using

cookies, JW'T tokens, or other mechanisms.

9.3.2 Authentication Integration

The system integrates with various authentication providers (LDAP, OAuth, SAML, etc.) to

verify user credentials and establish their identity.

9.4. Request Routing and Processing 55

9.3.3 Role Assignment

Once authenticated, the user’s roles are determined through integration with identity providers

or internal role mappings. These roles are cached in the session for performance.

9.3.4 Session State

The session maintains:

o User identity and roles

e Current language preference

e Navigation history

o Cached command results (when appropriate)

¢ Active datasource connections

9.4 Request Routing and Processing

The Web Spinner handles incoming HTTP requests through a sophisticated routing mechanism:

9.4.1 URL Parsing

Incoming URLs are parsed to extract the area/page/content hierarchy. For example:

o https://portal.acme.com/sales/dashboard — Area: "sales', Page: "dashboard"
e https://portal.acme.com/sales/dashboard/orders-table — Area: "sales', Page: "dashboard",

Content: "orders-table"

9.4.2 Element Resolution

Using the pre-built routing table, URLs are resolved to specific WBDL elements. Missing or invalid

paths result in no result in case of contents the nearest site or area main page in case of a page.

9.4.3 Protocol Handling

The Web Spinner supports both HT'TP and WebSocket protocols:

HTTP : Used for standard page and content requests, following RESTful principles

WebSocket : Used for real-time content updates, live data feeds, and interactive features

9.5 Visibility and Authorization Engine
Before any content is delivered, the Web Spinner performs comprehensive authorization checks:

9.5.1 Role-Based Filtering

For each requested element (page or content), the visibility rules are evaluated against the user’s

session roles:

e Elements with no matching role rules inherit visibility from their parent elements

e The hierarchical check continues up to the root element

56 Chapter 9. The Web Spinner

¢ Elements without explicit or inherited visibility permissions are denied by default

9.5.2 Dynamic Filtering

Visibility checks are performed in real-time for every request, ensuring that changes to user roles

or permissions take immediate effect.

9.5.3 Secure Response Generation

Only authorized elements are included in the response. Unauthorized elements are completely

omitted, preventing information leakage.

9.6 Content Request and Response Cycle

The Web Spinner handles content requests through a multi-stage process:

9.6.1 Page Structure Delivery

When a page is requested, the Web Spinner:

o Identifies all visible STWContent elements for the page
e Returns a lightweight response containing the list of content slugs and their metadata

e Includes section assignments and sequencing information for layout

9.6.2 Asynchronous Content Fetching

The client then requests individual content elements:

o Each content request triggers a separate web socket call to the Web Spinner
o Content elements are fetched in parallel, improving perceived performance
o FEach content element is processed independently, allowing for granular caching and error

handling

9.6.3 Content Processing Pipeline

For each content request, the Web Spinner:

Validates user authorization for the specific content element

Resolves the associated datasource and command

Processes the command through the WBPL (Webbase Placeholders Language) engine
Executes the processed command against the datasource

Applies the content layout transformation

ANl o A

Returns the rendered content or raw data (depending on the request type)

9.7 Datasource Connection and Command Management

The Web Spinner maintains a sophisticated datasource management system:

9.8. Performance Optimization and Timeout Management 57

9.7.1 Connection Pooling

Database and API connections are pooled and reused across requests to optimize performance

and resource utilization.

9.7.2 Command Processing

Raw queries defined in STWContent elements undergo several processing steps:

WBPL Processing : Placeholders are resolved using session data, URL parameters, and global
variables
Security Validation : Processed queries are validated to prevent injection attacks

Optimization : Command plans may be cached for frequently-executed queries

9.7.3 Multi-Datasource Support

The system supports heterogeneous datasources:

Relational Databases : SQL queries with full WBPL placeholder support
REST APIs : HTTP requests with parameter substitution and response transformation
NoSQL Databases : Native command languages (MongoDB, Elasticsearch, etc.)

File Systems : Direct file access and processing

9.7.4 Error Handling

Datasource errors are gracefully handled:

e Connection failures trigger automatic retry logic
e Command errors are logged and appropriate error responses are returned

o Partial failures in multi-content pages don’t affect other content elements

9.8 Performance Optimization and Timeout Management

The Web Spinner implements several performance and reliability features:

9.8.1 Content Timeouts

Each content element has configurable timeout settings:

Command Timeout : Maximum time allowed for datasource queries
Layout Timeout : Maximum time for layout compilation and rendering

Total Request Timeout : Overall timeout for content delivery

9.8.2 Caching Mechanisms

Multiple levels of caching improve performance:

Command Result Caching : Datasource results are cached based on command signatures
Layout Caching : Compiled layouts are cached until templates change

Response Caching : Complete HT'TP responses may be cached for static content

58 Chapter 9. The Web Spinner

9.8.3 Load Balancing

Multiple Web Spinner instances can operate in parallel:

e Session affinity ensures consistent user experience
e Shared cache layers enable scaling across multiple servers

e Health monitoring ensures failed instances are automatically excluded

9.8.4 Monitoring and Metrics

The Web Spinner provides comprehensive monitoring:

Request /response times and throughput metrics

Datasource performance and error rates

o User session analytics and behavior patterns

System resource utilization and capacity planning data

This architecture ensures that the Web Spinner can handle enterprise-scale workloads while

maintaining high performance, security, and reliability standards.

9.9 Looking Forward

At this point, we have a powerful engine and a sophisticated set of languages. However, asking
developers to write raw WBDL in a text editor, manage resources via the command line, and test
queries in a separate database tool would be laborious and inefficient. How can we streamline

this development process?

This is where the Spin the Web Studio comes in. The Studio, itself a webbaselet, provides a
comprehensive, integrated development environment for building, testing, and deploying webbases.
It is the testing ground for the entire Web Spinner ecosystem and an essential tool for any serious

developer. The next chapter will be dedicated to exploring the Studio’s rich feature set.

Chapter 10

Spin the Web Studio: An Integrated De-
velopment Environment

"The best way to predict the future is to invent it."
— Alan Kay

10.1 The Need for an Integrated Environment

While the WBDL and WBPL languages provide a powerful declarative framework for defining enterprise
portals, and the Web Spinner engine offers a robust runtime, the development experience can

still be laborious. Without a dedicated toolset, a developer would be forced to:

o Write and edit complex WBDL files in a standard text editor, without syntax highlighting,
validation, or autocompletion.

o Manage portal resources, such as datasources and user roles, through command-line interfaces
or direct database manipulation.

o Create and test WBPL queries in a separate database management system, disconnected from
the portal context.

e Manually compile and deploy the webbase to see the results of any changes.

This fragmented workflow is inefficient, error-prone, and a significant barrier to productivity. To

address these challenges, the Spin the Web Studio was created.

10.2 Introducing the Spin the Web Studio

The Spin the Web Studio is a webbased development environment designed specifically for
building, testing, and managing webbases. It streamlines the entire development lifecycle, from

initial design to final deployment, providing a single, coherent interface for all development tasks.

Crucially, the Studio is not an external, standalone application. It is itself a webbaselet, built

using the very same technologies it helps to create. This has two profound implications:

1. The Ultimate Testing Ground: The Studio serves as the primary testing ground for the Web
Spinner engine and the entire Spin the Web framework. Every feature of the framework must

be robust and performant enough to run the Studio itself.

99

60 Chapter 10. Spin the Web Studio: An Integrated Development Environment

2. Part of the Virtualized Portal: As a webbaselet, the Studio can be seamlessly integrated
into any webbase. This allows developers with the appropriate permissions to access the
development environment directly from within the live portal, making it a true part of the

virtualized web portal.

10.3 Studio Architecture and Activation

The Studio operates as a specialized webbaselet that is added to the portal webbase and is
accessible to users with developer permissions when they log in. The studio remains hidden until
activated by the developer using the keyboard shortcut Alt+F12.

Upon activation, the Studio transforms the portal interface into a full-featured development

environment with the following key components:

Action Bar Provides quick access to the Studio functions.

Side Bar Houses multiple views including interactive webbase hierarchy, portal folder contents,
search capabilities, debugging tools, source control integration, and Studio settings.
Status Bar Displays development status information, compilation results, and system feedback.

Panel Contains additional development tools, terminal access, and debugging output.
Main Section Features a tabbed interface where the live portal is displayed in a persistent

browser tab alongside other editors.

10.3.1 Unique Browser Tab Integration

One of the Studio’s most innovative features is its tab management system. The main section
displays the live portal in a special browser tab that cannot be closed, ensuring developers
always maintain visual connection to their running application. Portal resources such as files,

configurations, and logs can be opened in separate tabs for editing and review.
This design creates an in-place development experience where:

e Changes to WBDL files are immediately reflected in the persistent portal view
e Developers can interact with the live portal while simultaneously editing its underlying code
e The development environment becomes part of the portal ecosystem rather than an external

tool

10.3.2 Side Bar Navigation

The Studio’s side bar provides comprehensive navigation and development tools through multiple

specialized views:

Interactive webbase Hierarchy A tree view displaying the complete structure of the webbase,
allowing developers to navigate between webbaselets, datasources, and configurations with
visual context.

Portal Primary Folder Contents Direct access to the portal’s file system, enabling quick file
management and resource organization.

Search Comprehensive search capabilities across both webbase definitions and folder contents,

supporting pattern matching and content searches.

10.4. Key Features of the Studio 61

Debugging Integrated debugging tools for WBPL queries, webbaselet execution, and runtime
diagnostics.

Source Control Built-in version control integration for tracking changes to webbase definitions
and portal resources.

Studio Settings Customization options for the development environment, including themes,

editor preferences, and workflow configurations.

10.4 Key Features of the Studio

The Studio is organized into several key modules, each addressing a specific aspect of webbase

development.

10.4.1 The WBDL Editor

A rich text editor with full support for the WBDL syntax, featuring:

e Syntax highlighting for improved readability.
o Real-time validation to catch errors as you type.
e Autocompletion for element names and properties.

e A hierarchical tree view for easy navigation of the webbase structure.

10.4.2 The WBPL Command Builder

An interactive tool for creating, testing, and debugging WBPL queries:

e A graphical interface for building complex queries.
o The ability to execute queries against live datasources and view the results instantly.

e A 'persona simulator" to test queries under different user roles and contexts.

10.4.3 Resource Management

A centralized dashboard for managing all portal resources:

o Datasource Configuration: Connect to and manage various data sources (databases, APIs,
etc.).
o User and Role Management: Define user roles and assign permissions.

e Asset Library: Upload and manage static assets like images, CSS, and JavaScript files.

10.4.4 Live Preview and Deployment

The Studio provides a real-time preview of the portal as you build it. Developers can instantly
see how their changes will look and behave. When development is complete, the Studio offers

one-click deployment to staging or production environments.

62 Chapter 10. Spin the Web Studio: An Integrated Development Environment

10.5 Looking Forward

The Spin the Web Studio completes the conceptual picture of the framework, providing the
"workshop" necessary to build with the "blueprint" and the "engine." It transforms webbase

development from a manual, error-prone task into a streamlined, interactive experience.

Now that we have covered the complete set of tools in the framework—from the declarative
languages to the runtime engine and the IDE—the next chapter will ground these concepts in
reality. We will examine the specific technology stack and implementation details of the reference

Web Spinner, revealing how these architectural principles are translated into running code.

Chapter 11

Technology Stack and Implementation

This chapter documents the concrete technologies used to implement the web spinner mechanics

and how the theoretical constructs from Part II are realized in a working system.

11.1 Runtime and Languages

The reference implementation is written in TypeScript and runs on the Deno runtime:

Deno runtime and TypeScript for server-side logic

Standard Web APIs (URL, URLSearchParams, Fetch, Crypto) leveraged directly in server
code

No Node.js dependency; tasks and scripts are run via Deno (e.g., CSS/JS minification)

Containerization via a multi-stage Dockerfile based on denoland/deno:alpine

11.1.1 Why Deno for the Web Spinner?

Choosing Deno aligns the engine with the platform’s web-first design and keeps the implementation

close to the browser runtime:

TypeScript end-to-end: one language for the spinner, utilities, and any shared logic with
client code.

Web APIs in the server: standard URL, Request/Response, Fetch, and Crypto lower cognitive
load and reduce bespoke abstractions.

Secure-by-default: explicit permissions (fs, net, env) encourage disciplined deployment.
Batteries included: built-in formatter, test runner, task runner, and linting simplify tooling.
Simple deploys: reproducible Docker images and a single binary runtime keep operations
light.

ESM-first: native modules and top-level await fit the compilation model used by WBLL and
WBPL tooling.

Other implementations are welcomed, provided they adhere to the specifications and interoper-
ability guidelines set forth by the Spin the Web Foundation.

63

64 Chapter 11. Technology Stack and Implementation

11.2 High-Level Architecture

The spinner is a server that understands WBDL. On each request it:!

1. Establishes or resumes a session (user, roles, locale, placeholders)

2. Ensures the requested WBDL/Webbase is loaded into an in-memory tree

3. Decides whether to respond with a resource directly or with a list of REST calls the client
should make (async via WebSockets)

4. Renders contents on demand using WBLL-driven layouts and returns HTML fragments/re-

sources

11.3 Core Elements and Site Tree

The in-memory model mirrors the WBDL structure:

o STWSite (singleton root), STWArea, STWPage, STWContent

o All derive from an abstract STWElement providing identity, naming, localization, hierarchy,
and export to WBDL

e A content type (e.g., Text, Table, Menus, Breadcrumbs, Calendar, Code Editor, ...), imple-

mented under stwContents/, encapsulates data access and rendering concerns

11.4 Rendering Pipeline: WBLL and WBPL

Presentation is described with WBLL (Webbase Layout Language), interpreted by a layout

engine:

e WBLL strings are tokenized and validated; tokens drive generation of a specialized render
function

o Token handlers cover inputs, lists, links, media, buttons/actions, and structural fragments;
they build HTML using placeholders and field values

o WBPL expressions provide string interpolation and conditional/functional logic within layouts
and settings

o Placeholders (e.g., @name) merge session, request, and record values

11.5 Request Flow in Practice

For a content render request:

1. The session determines visibility (role-based) and language

2. The content locates its WBLL layout for the current language

3. Records are fetched (via a datasource or parameters); the first row and fields hydrate
placeholders

4. The compiled WBLL render function executes, producing the HTML body; optional header /-
footer wrappers apply

See also the “Paradigm” section in the implementation README

11.6. Security, Localization, and State 65

11.6 Security, Localization, and State

e Visibility: role-based flags inherited along the element tree control exposure of nodes
o Localization: localized properties (names, slugs, messages) are resolved through the session

e State: per-session placeholders and content-level settings influence rendering and actions

11.7 Build, Tooling, and Deployment

o Deno tasks: merge and minify static assets (e.g., CSS merger, JS minifier) for the public/
client assets
o Tests: parsing and evaluation tests for WBPL ensure correctness of expressions and escaping

e Docker: multi-stage build caches Deno dependencies and ships a non-root runtime image

11.8 Where the Mechanics Live (Guide to Source)

The following folders in the reference implementation contain the mechanics described above:

o stwElements/: STWElement, STWSite, STWArea, STWPage, STWContent

o stwContents/: concrete contents and WBLL engine (layout parsing/rendering)
o tests/: WBPL and layout-related unit tests

e public/: client-side scripts, styles, and SPA shell

e tasks/: Deno-powered dev/build utilities (e.g., minification, CSS merge)

11.9 Example: From WBDL to HTML

At a glance:

1. WBDL defines the site tree; the spinner builds an in-memory model at startup/load

2. A user navigates to a page; the spinner locates the route and the associated contents

3. Each content loads data (if needed), prepares placeholders, and renders its WBLL layout

4. The server responds with an HTML fragment or instructs the client to fetch multiple fragments
via REST/WebSockets

This chapter has bridged theory and implementation, showing how the abstract mechanics of the
Web Spinner are realized in a modern technology stack. With the platform’s construction now
fully detailed—from its languages to its engine and development tools—our focus shifts from

building the framework to using it.

The next part of this book begins the practical guide for developers, covering the development
models and methodologies for designing and building effective web portals with the platform we

have just described.

66

Chapter 11. Technology Stack and Implementation

Part 111

The Web Portal

67

Introduction to Part lll: The Web Portal

"Structure is not just a means to a solution. It is the solution.”

— Alexandra V. Agranovsky

With the Spin the Web framework fully specified in Part II, this part transitions from engineer-
ing blueprints to practical application. It serves as the developer’s guide to the models and
methodologies for *using® the framework to design, build, and structure a real-world enterprise

portal.
This part now divides implementation into two complementary dimensions:

o Portal Contents (Structure, Semantics, Information) — Modeling Areas, Pages, and Content
blocks; embedding documentation; designing navigation, search, and task-oriented information
architecture (chapter 12).

o Portal Visuals (Presentation, Layout, Interaction) — Translating structure into accessible,

brand-aligned, performant user interfaces while preserving semantic integrity (chapter 13).

Throughout, we reference the public website spintheweb.org and the companion Spin the Web
Studio—both built with the framework—as running examples of the patterns described here. For
an overview of the community catalog used to discover and rate webbaselets, see the Ecosystem

webbaselet in appendix C.3.

By the end of this part, you will have a clear methodology for designing and building sophisticated
web portals using the Spin the Web framework—treating structure and presentation as orthogonal

layers that evolve independently yet harmonize in the delivered experience.

69

https://spintheweb.org

70

Chapter 12

Implementing Portal Contents: Struc-
ture, Semantics, and Information Flow

"Structure is the substrate of meaning; when well designed it becomes self-documenting

and accelerates delivery.”

This chapter covers how to model and implement the *informational side* of an enterprise portal
using WBDL: Areas, Pages, and Content blocks as semantic anchors; embedded documentation as a
living knowledge system; and patterns for navigation, search, and task execution. The emphasis

is on how structure transforms raw enterprise data into durable, navigable knowledge assets.

12.1 From Organization to Information Architecture

The starting point for portal content modeling is the enterprise itself. Business functions,
departments, service domains, and stakeholder-facing capabilities provide the *semantic inventory™*

that becomes your top-level STWArea set. Mapping is a translation exercise:

Collect the official organizational chart(s) and cross-functional process maps.
Identify external-facing vs. internal-only domains; decide which are public, private, or hybrid.

Normalize naming (short, role-recognizable labels) and prune redundancies.

W o=

Annotate each candidate Area with primary audiences, core data domains, and governing
policies.

5. Prioritize rollout sequence (critical operations first, supporting domains next, exploratory
later).

Example Top-Level Areas A manufacturing enterprise might define: Sales, Administration,
Backoffice, Technical Office, Products & Services. Each becomes an STWArea root for subordinate

Pages and Content.

Area definitions embed *living documentation*® through localized name, description, and keywords.
This collapses the distance between operational knowledge and runtime structure: the portal

itself becomes the manual.

71

72 Chapter 12. Implementing Portal Contents: Structure, Semantics, and Information Flow

12.2 Hierarchical Semantics and Namespaces

Hierarchy provides cognitive compression. The Hierarchical Namespace Pattern organizes content

so users predict where information lives. Recommended principles:

e Depth over width only when each level adds semantic clarity.

o Keep sibling counts manageable (7 42 heuristic for primary navigation tiers).

o Use stable identifiers (slugs) for Areas/Pages to preserve deep links and audit trails.

o Reflect role segmentation (what differs by role) at the STWContent or conditional rendering

layer rather than duplicating structural nodes.

Roles shape *visibility* and *interaction surfaces® but should not fork the structural namespace

unnecessarily. This separation sustains maintainability and consistent analytics.

12.3 Documentation Through Structure

Every WBDL element (Site, Area, Page, Content) hosts localized description and keywords. These
fields form a vertically integrated documentation system that can encode: quality policies,
compliance references, process identifiers, KPIs, audit obligations, data classification tags, and

internal taxonomy terms. Table 12.1 summarizes scope alignment.

Site Mission, global quality policy, enterprise standards.
Area Departmental procedures, regulatory scope, operating KPIs.
Page Process walkthroughs, workflow prerequisites, exception handling.

Content Field-level rules, validation, data retention, privacy notes.

Embedding this metadata enables: contextual help, machine-assisted authoring, internal semantic

search, automated compliance extraction, and Al augmentation (linking processes to data

touchpoints).
Table 12.1: Documentation scope by structural level

Level Primary Focus Typical Metadata Example Questions Enabled

Site Enterprise Mission Mission, quality policy, au- What is the overarching mis-
dit standards, global KPIs sion? Which global stan-

dards govern all Areas?

Area Department / Domain Procedures, regulatory Which regulations apply to
scope, data domains, risk this domain? Who owns the
class process?

Page Process / Journey Workflow steps, prerequi- What happens before/after
sites, exception handling, this step? What are escala-
SLA tion paths?

Content Field / Action Unit Validation rules, retention, Can this value be exported?

privacy flags, policy codes

How long is data retained?

The metadata lattice supports contextual help, semantic search ranking, compliance extraction, and Al-assisted

authoring.

12.4. Core Page Archetypes 73

12.4 Core Page Archetypes

Across domains three archetypes dominate main content regions:

Dashboards: Multi-source summaries for situational awareness and prioritization. Favor
glanceable KPIs, deltas, and exception surfacing.

Tabular / List Views: Filterable, paginated, sometimes hierarchical or pivot-capable collections
enabling search+select workflows.

Detail Views: Focused inspection/editing surfaces for a single entity with contextual navigation

(previous/next, related entities, timeline overlays).

Composite pages combine archetypes (e.g., miniature dashboard widgets above a list). Resist

uncontrolled aggregation—each archetype should answer a distinct question.

12.5 User Journeys and Page Design

Pages (STWPage) embody discrete user tasks or journeys. Design methodology:

1.

Task Enumeration: Elicit core user goals per Area (create quote, approve order, analyze
defect rate).

. Journey Mapping: Sequence states and data intersections; identify required contextual jumps

(entity cross-links) to minimize session fragmentation.

. Structural Allocation: Assign each journey to a Page; merge only if cognitive load stays low

and authorization scopes match.

. Section Layout: Header (global actions), sidebars (navigation, filters, summaries), main body

(primary archetype), footer (feedback, contacts).

. Instrumentation: Embed identifiers and metadata for analytics, ticketing, and performance

tracing.

Integrated Ticketing A mature portal treats structure itself as a support surface. Ticket

submissions should auto-capture structural scope (site/area/page/content IDs), user locale, and

active filters. This converts qualitative feedback into structured, triage-ready data.

12.6 Building with Content Blocks

STWContent instances are atomic functional or informational units: forms, tables, charts, grids,

banners, maps, metrics, documents. Composition principles:

Single Responsibility: Each block answers one primary question or supports one action
cluster.

Declarative Data Binding: Use WBPL for parameterized queries; keep transformation logic
close to data retrieval for transparency.

Progressive Disclosure: Lazy-load heavy or low-priority content blocks to reduce initial
cognitive and performance load.

Embedded Governance: Include validation rules, policy codes, and retention hints inside

description metadata.

74 Chapter 12. Implementing Portal Contents: Structure, Semantics, and Information Flow

o Reusability: Parameterize commonly repeated patterns (e.g., entity summary panels) rather

than cloning definitions.

Example Composition A public "Products" page may combine: hero banner (static), category
menu (dynamic list), product grid (dynamic, filtered), featured carousel (dynamic curated), and

call-to-action block—each a discrete STWContent.

12.7 Search, Discovery, and Internal SEO

Localized keywords and description fields drive internal search relevance. Two complementary

modes:

Global Search Traverses full structural graph; returns heterogenous results ranked by metadata
quality, usage signals, and recency.
In-Context Search Operates within the active Page scope: filters list/table rows, quick-finds

form fields, queries localized help.

Design guidance: persistent global search affordance (often header); proximal in-context search
control near target content. Provide keyboard shortcuts, accessible labeling, and query history.
Treat internal search analytics as a requirements radar (unmet search intent indicates structural

or content gaps).

12.8 Patterns and Evolution

Long-term iteration reveals recurring cycles: pattern recognition — insight — abstraction —

simplification. Content modeling matures by:

¢ Consolidating duplicated structures into parameterized definitions.

« Elevating cross-cutting concerns (authorization tags, retention policies) into shared vocabu-
laries.

¢ Refactoring deep hierarchies when navigation analytics show friction.

e Capturing emergent naming conventions to stabilize taxonomy.

e Instrumenting evolution (version history of structural nodes) to support audits and Al

summarization.

The endpoint is elegant simplicity: a minimal, expressive structure that scales without combina-

torial explosion.

12.9 Conclusion

The content layer transforms disparate enterprise data into structured, navigable, contextual
information assets. By treating every node (Area/Page/Content) as both functional unit and
documentation carrier, the portal becomes a continuously evolving, queryable knowledge base

that supports operations, compliance, and learning.

Chapter 13

Implementing Portal Visuals: Presenta-
tion, Layout, and Interaction

"Visual design should disappear into function, letting users feel the system rather than

notice it."

This chapter focuses on the *visual and interaction layer* of a Spin the Web portal: translating se-
mantic structure into perceivable, accessible, performant, and brand-aligned experiences—without
compromising the stability of information architecture defined in chapter 12. The goal is to make

presentation an *orthogonal dimension*: evolvable, themable, and testable in isolation.

13.1 Separation of Structure and Presentation

Structure lives in WBDL: Areas, Pages, and Content blocks define semantics, navigation graph, and
documentation. Presentation lives in a theming and layout layer (CSS variables, design tokens,

component library primitives) that consumes structural metadata. This separation yields:

e Predictable Evolution: New visual themes deploy without structural migrations.

« Stable Deep Links: URLs and identifiers remain constant across redesigns.

o Semantic Integrity: Search, analytics, and Al augmentations operate on durable structure,
not brittle selectors.

e Test Focus: Functional tests target structure and logic; visual regression suites target

presentation surfaces.

Anti-patterns: encoding layout meaning into identifiers; duplicating Pages solely for cosmetic

variants; baking brand colors into content definitions.

Design Tokens Use an invariant token vocabulary (e.g., color.surface.raised, space.xs,
font.heading.scale) mapped to concrete theme values. Tokens enable multi-brand deployments

and dark/light adaptation with minimal churn.

75

76 Chapter 13. Implementing Portal Visuals: Presentation, Layout, and Interaction

13.2 Layout Regions and Responsiveness

Canonical regions: Header (global nav, identity, search), Primary Navigation (lateral or hori-
zontal), Context Pane (filters, related entities), Main Content, Ancillary Panels (notifications,

collaboration), Footer (legal, contact). Responsive strategy principles:

1. Mobile First Density: Collapse non-critical side regions into overlay drawers; preserve primary
task path above decorative brand elements.

2. Breakpoint Semantics: Define breakpoints where interaction model changes (hover removed
< tablet, multi-column grids collapse).

3. Progressive Disclosure: Defer rendering of off-screen heavy panels until first invocation.

4. Adaptive, Not Just Responsive: Personalize ordering of blocks based on role usage analytics

while retaining structural IDs.

Use CSS grid/flex abstractions aligned to tokenized spacing; avoid ad hoc pixel constants.

13.3 Navigation Systems and Flow

Navigation manifests user mental models of the structure. Layers:

Global Navigation Exposes top-level Areas; must be stable, sparse, and keyboard navigable.

Local Navigation Contextual to an Area or Page section (tab sets, side menus) for lateral moves.

Breadcrumbs Encode path memory; avoid redundancy when global navigation already fully
mirrors hierarchy depth 1.

Inline Relational Links Provide graph exploration (related entities, recent activity) without

forcing full context switch.

Design heuristics: prefer predictable repetition (consistent placement) over novelty; minimize
hover-only affordances; provide explicit focus order. Instrument navigation events to surface

friction (abandoned path segments, loop behaviors).

Image and Iconographic Navigation Navigation can also be accomplished through clickable
images, floor-plan style “planimetries”, diagrams, or semantically meaningful icons. These
affordances are powerful for spatial, facilities, product catalog, or process topology exploration.

To integrate them without sacrificing accessibility or scalability:

¢ Semantic Redundancy: Every image-driven affordance must have a parallel text link or
ARIA-labelled control to support screen readers and search indexing.

o Vector Over Raster: Prefer SVG with distinct, focusable regions (using <a> or role="1ink")
instead of image maps on raster graphics; enables theming and high-DPI crispness.

o Descriptive Tooltips: Provide concise tooltips / title attributes; avoid encoding primary
meaning solely in color or pictogram shape.

» Responsive Hit Targets: Ensure minimum target size (44 px CSS) across breakpoints; adapt
layout so targets do not cluster too densely on touch devices.

o Keyboard Pathways: Maintain logical tab order across hotspot regions; allow arrow-key or

WASD navigation for spatial grids where appropriate.

13.4. Dashboards, Tables, and Details 77

o Progressive Enhancement: Initial load should render a textual list fallback while SVG /hotspot
script enhancements hydrate.

e Performance Budget: Large planimetric diagrams should be chunked or lazily loaded; defer
non-visible layers (e.g., annotations) until interaction.

o Analytics Instrumentation: Tag each hotspot with structural IDs (Area/Page/Content) and
business semantics to measure navigation efficacy and dead zones.

e Scalability: For dynamic catalogs, auto-generate hotspot layers from the WBDL structure rather
than manually editing coordinates.

o Theming: Bind fills, strokes, and hover states to design tokens (not hard-coded colors) for

dark mode and brand adaptations.

Use image-based navigation to accelerate discovery, not to replace canonical hierarchical paths.
Spatial or iconographic maps become a complementary entry surface feeding into the same stable

URL and breadcrumb system.

13.4 Dashboards, Tables, and Details

Visual treatments align to archetype intent:

o Dashboards: Prioritize contrast, succinct labeling, and anomaly highlighting. Limit cardinality
of primary KPT tiles (7 £2). Provide consistent tile grammar: label, value, delta, trend.

o Tables / Lists: Support density toggles (comfortable/compact), sticky headers, column
personalization. Emphasize scannability: left-align textual identifiers, right-align numeric
aggregates, reserve iconography for actionable states.

o Detail Views: Anchor with an identity bar (title, status, primary actions). Segment content
with visual rhythm (spacing tiers) not heavy borders. Provide contextual next/previous

navigation when part of a result set.

Cross-cutting: embed loading placeholders shaped like final content (skeletons) to reduce perceived

latency; ensure empty states teach next action.

13.5 Role-Based Visual Adaptation

Authorization governs data visibility; visual adaptation communicates scope without fragmenting

structure. Techniques:

o Conditional display of Content blocks (retain layout placeholders to avoid jumpy reflow when
possible).

e Progressive disclosure of advanced filters and bulk actions only for privileged roles.

o Declarative role tags bound to CSS utility classes for subtle emphasis (e.g., manager-only
highlights).

o Unified audit overlay mode (toggle) to display why elements are hidden (for debugging and

governance).

Avoid: duplicating Pages per role; mixing security logic into visual components instead of central

policy engines.

78 Chapter 13. Implementing Portal Visuals: Presentation, Layout, and Interaction

13.6 Feedback, Ticketing, and Observability

Integrate a frictionless feedback loop aligned with structure (see chapter 12 on instrumentation).

Key UI constructs:

o Inline issue trigger (icon/button) scoped to Page or Content block; auto-captures structural
IDs, user locale, and viewport size.

e Session timeline panel exposing recent navigation, feature flags, and performance spans for
support replication.

o Visual state indicators: latency spinners, deferred load badges, stale data warnings with last
refresh timestamp.

o Observability overlay (admin only) highlighting render cost hotspots / API latency zones.

Close the loop: a ticket success toast with deep link to status; encourage user re-engagement

instead of dead-end submission pages.

13.7 Search Experience Design

Two surfaces (global, in-context) must feel unified. Global search: omnipresent field or icon
opening a command palette style modal; supports keyboard invocation, fuzzy matching, and
result type grouping. In-context search: embedded within tables, forms, or navigation panels,

scoping results to current structural node.

Design Principles

¢ Immediate focus when opening global search; preserve prior query history with non-intrusive
ghost text.

o Provide semantic filters (Area/Page) as chips; avoid forcing users to learn query DSL initially.

e Highlight matched substrings for learnable relevance model feedback.

o Offer keyboard preview navigation with real-time detail pane (no full navigation until commit).

Accessibility: ARIA roles (combobox, listbox), announce result counts, maintain logical tab order

returning user to invoking control when dismissed.

13.8 Accessibility and Inclusive Design

Inclusive design is multiplicative: it improves efficiency for all users while enabling access for

those with specific needs. Core practices:

e Semantic HTML foundation; avoid div-only components.

o Color contrast meeting WCAG 2.1 AA (4.5:1 text, 3:1 large); test dark/light parity.

o Full keyboard operability: visible focus, logical order, skip links for main content.

e Motion reduction honoring prefers-reduced-motion; substitute subtle fades for large parallax.
o Localization readiness: mirrored layouts for RTL, flexible space for longer strings, numeric/-

date formatting.

13.9. Branding and Themability 79

o Assistive hints in metadata (descriptions) powering contextual help and screen reader sum-

maries.

Adopt automated accessibility testing plus manual audits (screen reader smoke tests) in CI.

13.9 Branding and Themability

Brand expression emerges from typography scale, color system, shape language (radius, stroke),

and motion curve palette. Implementation strategy:

1. Define neutral base theme (grayscale, spacing, layout primitives).

2. Layer brand-specific tokens (color, typography, motion) referencing base tokens—no hard-
coded hex in components.

3. Provide runtime theme switch (light/dark/high-contrast) with persisted user preference.

4. Guard legibility: run contrast validation when updating token sets; reject failing combinations.

5. Expose a Theme Inspector webbaselet for administrators to preview token diffs live.

Multi-brand portals map different token sets to identical WBDL structures, enabling re-use of

governance and search analytics.

13.10 Performance and Perceived Speed

User perception hinges on time to meaningful interaction. Strategies:

Skeleton Screens Mirror final layout; avoid generic spinners that reset user mental model.

Incremental Data Hydration Stream primary entities first; defer secondary panels (analytics,
recommendations).

Optimistic UI Reflect user intent immediately (button state, provisional row) with reconcile
fallback if server rejects.

Edge Caching Cache static assets and token manifests at CDN; version tokens for instant theme
rollbacks.

Resource Budgeting Define performance budgets (kb per route, API latency SLOs) and surface

violations in build pipeline.

Instrument Web Vitals (LCP, INP, CLS) and map to structural IDs for precise remediation.

Performance data should be browsable through an internal observability webbaselet.

13.11 Conclusion

A disciplined visual layer preserves semantic clarity while amplifying usability, trust, and brand
presence. By keeping presentation orthogonal to structure, portals remain evolvable: new themes,
devices, and interaction models can emerge without refactoring the underlying WBDL definitions.
Visual excellence compounds: accessible, performant, token-driven interfaces reduce cognitive

load and accelerate enterprise adoption.

80 Chapter 13. Implementing Portal Visuals: Presentation, Layout, and Interaction

Part IV

The Roadmap

81

Introduction to Part IV

This part looks ahead: emerging patterns, research directions, and opportunities for the Spin
the Web ecosystem. It consolidates lessons from earlier parts and projects them into near- and

long-term roadmaps.

Areas of exploration include interoperability with evolving web standards and APIs, perfor-
mance and cost at scale, formal methods for validating specifications and transformations, and

community-driven extension mechanisms.

A living roadmap. This book is a continuous work in progress. Part IV serves as a staging area
for forward-looking ideas and experiments. As proposals mature and are implemented, they are

promoted to:

o Part II (The Framework) — when they affect the framework’s languages, runtime, or tooling.
o Part IIT (The Web Portal) — when they shape methods, patterns, or models for portal design

and delivery.

The chapter that follows, The Roadmap (chapter 14), collects the most promising threads and

defines criteria for promotion into the main body of

83

84

Chapter 14

The Roadmap

This chapter explores the transformative potential of Spin the Web as it evolves beyond individual
portal development toward intelligent, interconnected business ecosystems. We examine how Al
agents can enhance portal functionality while envisioning a future where structured corporate

portals enable seamless machine-to-machine communication across global business networks.

14.1 Agentic UX

o Contextual copilots embedded within areas/pages
o Task-oriented flows that orchestrate multiple contents and APIs

o Natural-language prompts mapped to parameterized actions

14.2 Knowledge and Reasoning

e Retrieval pipelines grounded in the webbase, logs, and domain docs
e Guardrails and policy evaluation layered over actions

o Transparent, auditable traces for enterprise adoption

14.3 Learning Loops

e Implicit feedback from usage, explicit ratings for outcomes
¢ Continuous improvement of layouts, queries, and flows

« Safe experimentation with feature flags and A/B variants

14.4 Operational Model

e Private inference endpoints and on-prem models for compliance
o Event streams for real-time adaptations and monitoring

o Cost controls, quotas, and quality-of-service tiers

14.5 Standards and Interop

e Schema-first contracts for tools and agent actions

o Portable traces and evaluation datasets

85

86 Chapter 14. The Roadmap

e Alignment with emerging agent frameworks and security best practices

14.6 The Digital Ecosystem Vision: Machine-to-Machine Business
Communication

Envision a digital world where every company maintains a structured web portal built on
declarative principles—a world where business communication transcends human interfaces to
enable seamless machine-to-machine interaction. In this ecosystem, corporate portals would serve
as standardized digital representations of organizations, with each portal exposing structured data

through consistent WBDL definitions that machines can interpret and interact with automatically.

Consider the transformative potential: when suppliers, customers, partners, and service providers
all maintain portals with standardized structures, business processes could become truly auto-
mated. A manufacturing company’s portal could automatically command supplier portals for
inventory levels, pricing updates, and delivery schedules. Customer portals could seamlessly
integrate with vendor systems for real-time order tracking, automated reordering, and predictive
maintenance scheduling. Regulatory compliance could be achieved through automated data

exchange between corporate portals and government systems.

This vision extends the concept of eBranding into eMachineReading—where organizations design
their digital presence not only for human stakeholders but also for automated business processes.
The hierarchical documentation principles embedded within WBDL structures would provide the
semantic foundation necessary for machines to understand business context, process flows, and
data relationships. Quality management metadata embedded in portal structures would enable
automated verification, compliance checking, and performance monitoring across entire business

networks.

The Spin the Web framework’s emphasis on declarative languages and embedded documentation
makes this vision achievable. When every business decision, process, and data element is
described through structured keywords and description attributes, the resulting portals become
self-documenting APIs that both humans and machines can navigate with equal effectiveness.
This represents a paradigm shift from today’s fragmented digital business landscape toward
an interconnected ecosystem where organizational boundaries become permeable to automated

business intelligence while maintaining security and appropriate access controls.

Such a digital ecosystem would fundamentally reshape how businesses discover, evaluate, and
engage with one another, creating unprecedented opportunities for efficiency, innovation, and

global economic integration through structured digital representation.

14.7 Closing Thoughts

[sectionUnification of WBDL and AI: Consequences and Opportunities]

The unification brought about by WBDL and modern Al has profound consequences for the future

of digital ecosystems:

14.8. API-First Enterprise Software: WBDL as Universal Ul 87

e Semantic Interoperability: WBDL provides standardized, machine-readable descriptions of
web resources. Al systems can leverage this structure to understand, reason about, and
manipulate web content, enabling automation and intelligent integration across platforms.

o Automated Reasoning and Decision Making: Al agents can use WBDL’s structured data to
perform complex reasoning, automate workflows, and make context-aware decisions, resulting
in smarter web applications that adapt to user needs and business environments.

o Accelerated Innovation: Developers and organizations can build new tools and services more
rapidly, as Al can interpret and act on WBDL-described resources without manual intervention,
reducing development time and errors.

e Enhanced Discoverability and Personalization: Al systems can use WBDL metadata to better
understand user intent and preferences, enabling more accurate search, recommendation, and
personalization features.

e Cross-Domain Integration: The modularity of WBDL and the generalization capabilities of Al
make it easier to connect disparate systems, data sources, and services, fostering a unified

and intelligent web ecosystem.

In summary, the synergy between WBDL and Al transforms the web from a collection of static
resources into a dynamic, intelligent, and interoperable environment, driving new possibilities for

automation, personalization, and innovation.

14.8 API-First Enterprise Software: WBDL as Universal Ul

Looking forward, the Foundation actively advocates for enterprise software vendors to provide
robust, well-documented APIs capable of managing all aspects of their software. This is essential
for global adoption of the API-first paradigm: organizations expose business processes, data,
and operations through APIs—REST, GraphQL, or other standards—while WBDL acts as the

universal Ul layer, consuming these APIs to build flexible, unified portals.

The Foundation’s Position: For Spin the Web to reach its full potential, enterprise software houses
must offer comprehensive APIs for their products. These APIs should cover all major business
functions, data access, and operational controls, enabling WBDL to consume and orchestrate

them in portal Uls. This advocacy is essential for:

e Modernizing legacy and monolithic systems without rewriting core logic
o Integrating diverse platforms into unified, role-based user experiences

o Accelerating portal development and deployment

e Future-proofing organizations against backend migrations or upgrades

e Enabling machine-to-machine business communication and automation

In this paradigm, WBDL orchestrates UI, navigation, and user journeys, while all backend
interactions—authentication, business rules, data queries—are handled via API calls. This
separation of concerns supports agile development, scalability, and global adoption. As more
enterprise systems adopt API-first strategies, WBDL can unify them, delivering consistent,

brand-aligned experiences for both human and machine users.

88 Chapter 14. The Roadmap

Crucially, WBDL can interact with any enterprise software—provided the data is made accessi-
ble—using a uniform paradigm: data is searched, the search result is a list, and the items in the
list can be explored. This means that on a single webpage, different datasources (from multiple
systems) can be accessed and presented as if they were managed by a single unified software.
This capability opens the full universe of eBranding: organizations can design digital experiences
that seamlessly blend data and functionality from diverse platforms, delivering a coherent brand

identity and user journey across all business domains.

Intelligent agents enhance the portal experience rather than replace it. WBLL and WBDL remain
the foundation, while agents act as advanced collaborators—able to read, write, and reason
across the webbase to accelerate meaningful work and unlock new possibilities for automation

and insight.

Appendices

89

Appendix A

WBDL JSON Schema Reference

This appendix collects the formal JSON Schema definitions for the main WBDL element types
used in Spin the Web. These schemas provide the canonical structure for sites, areas, pages, and

content elements.

A.1 STWElIement Base

{
i {
{ ’ }7
[’ ’ y] },
3
}?
{ h
{ b
: { 3
R
{ : }
}
b
[’ ’ ’]
}
Listing A.1: STWElement Base Schema Definition
A.2 STWSite
{

91

92 Appendix A. WBDL JSON Schema Reference

"$schema”: "https://json-schema.org/draft/2020-12/schema”,
"title": "STWSite",
"allof": [{ "$ref”: "STWElement.json" }1],
"properties”: {
"type": { "const”: "Site" },
"mainpage”: { "type": "string", "format"”: "uuid"” 3},
"langs": {
"type": "array”,
"items": { "type": "string" }
1
"datasources”: {
"type": "array”,

"items": { "type": "object” }

})
"children”: {
"type": "array”,
"items": { "$ref”: "STWArea.json” }
}
}7
"required”: ["mainpage"]
3
Listing A.2: STWSite Schema Definition
A.3 STWArea
{

"$id": "https://spintheweb.org/schemas/STWArea. json",
"$schema”: "https://json-schema.org/draft/2020-12/schema”,
"title": "STWArea",
"allof": [{ "$ref”: "STWElement.json" }1,
"properties”: {

"type": { "const": "Area" },

"mainpage”: { "type": "string”, "format”: "uuid" }

}7
"required”: ["mainpage"]
}
Listing A.3: STWArea Schema Definition
A.4 STWPage
{

"$id": "https://spintheweb.org/schemas/STWPage. json",
"$schema”: "https://json-schema.org/draft/2020-12/schema”,
"title": "STWPage",

"allof": [{ "$ref”: "STWElement.json"” }1],

A.5. STWContent 93

i {
{ 1
2 q
{ }
}
b
L]
}
Listing A.4: STWPage Schema Definition
A.5 STWContent
{
: [{ g 3,
: {
{ b
{ 3
{ 3
{ 1
{ 1
{ 1
{ b
{ b
{ }
1,
L]
}

Listing A.5: STWContent Schema Definition

A.6 STWContentWithOptions

. [{ : }]7

}!

94

Appendix A. WBDL JSON Schema Reference

3

},

Listing A.6: STWContentWithOptions Schema Definition

Appendix B

WBLL Token Reference

This appendix provides a complete reference for WBLL tokens.
General syntax: <token>('argli[;arg2][;arg3]...")
Brackets denote optional arguments:

e No arguments: e
e One argument: e('argl"')
e Two arguments: e('argl;arg2")

e Three arguments: e('argl;arg2;arg3"')

If you need to skip a middle argument, use an empty segment: e.g., e(';username') omits format.

Formatting note: the format argument applies only to numeric output in e and f (e.g., € #,##0.00,

#,##0, 0). For non-numeric values it is ignored; inputs default to text.

Cursor movement policy: editing tokens (form controls such as h, e, w, m) advance the field cursor
when the name is not specified; non-editing tokens advance only when they implicitly consume

the active field value.

Example recordset (fields in order): price, username, city.

price username city
1234.5 alice Milan
99 bob Paris
0 carol Berlin

Assumptions for examples: unless stated otherwise, (1) examples evaluate the first row; (2) the
field cursor starts at the first field (price); (3) when currency output like “€ 1,234.50” appears, it
is the formatted price of row 1 using the pattern € #,##0.00.

95

96 Appendix B. WBLL Token Reference
Token /* comment text x/
Description Multiline comment. The interpreter ignores everything between /* and */.
Can span multiple lines. Produces no output and does not move the field
Cursor.
Example Code and output below.
1f /* comment
spanning
lines */
\rl('UserName')f
Renders:
<label>price</label>1234.5
<label>UserName</label>alice
Token // comment text
Description Line comment. The interpreter ignores everything from // to the end of the
line. Produces no output and does not move the field cursor.
Example Code and output below.
t('Hello') // inline comment after code
\r
// full-line comment
t('World")
Renders:
Hello
World
Token <
Description Moves the field cursor back by one position. Produces no output. If the cursor
is already at the first field, this operation is a no-op.
Example Code and output below.
>>><f
Renders:

Milan

97

Token >

Description Advances the field cursor by one position. Produces no output. If the cursor is
already at the last field, this operation is a no-op.

Example Code and output below.

>f

Renders:

alice

Token \A('attr="value” ...")

Description Like \a, but applies attributes to the parent structural element: the nearest
enclosing <tr> (in table contexts) or (in list contexts). Non-editing;
produces no output and does not move the field cursor. Has effect only when
inside a table row or list item context. The attributes are processed by the
WBPL interpreter.

Example Code and output below.

// In a table row context (created by the table subtype)
\A('class="highlight"')e

// In a list item context (created by the list/menu subtype)

\A('data-role="user"')>e(';username')

Renders:

<tr class="highlight">... <input type="text"” name="price" value="1234.5"> ...</tr>

<li data-role="user">... <input type="text"” name="username" value="alice"> ...

98 Appendix B. WBLL Token Reference

Token \a('attr="value" ...")

Description Assigns HTML attributes to the most recently emitted element. Use imme-
diately after a token that creates an element (e.g., e, w, m, h). Attributes
are appended /merged; later attributes override earlier ones when duplicated.
Non-editing; produces no output and does not move the field cursor. The
attributes are processed by the WBPL interpreter.

Example Code and output below.

e\a('required style="color:red"")
>e(';username')\a('maxlength="20"")
Renders:
<input type="text" name="price" value="1234.5" required style="color:red"><input
— type="text"” name="username"” value="alice"” maxlength="20">

Token \r

Description Inserts a line break:
. Non-editing; produces no value output and does
not advance the field cursor.

Example Code and output below.

f\rf
Renders:

1234.5
alice

99

Token e('format[;namell[;valuel')
Description Renders a input element. Arguments are positional but optional. Defaults:
format = identity, name = active field name, value = active field value. Cursor

rule (editing): the cursor advances when name is not specified; if name is
provided, the cursor does not advance (even if value is omitted). Formatting:
format applies only to numeric values.

Example Code and output below.

e('€ #,##0.00;price;1234.5") // All args explicit: no cursor advance; numeric format
— applied

e // Use active field name and value: advances

e(';username') // Explicit name; uses active field value (username); no cursor

< advance
Renders:

<input type="number" name="price"” value="€ 1,234.50"><input type="number"”

< name="price" value="1234.5"><input type="text" name="city" value="Milan">

Token f('format')

Description Renders the active field value at the cursor, optionally applying a numeric
format. The format argument is positional but optional (default: identity).
Cursor rule (non-editing): advances because it consumes the active field value.

Formatting: applies only to numeric values.

Example Code and output below.

f('€ #,##0.00')\r // Currency formatting of active numeric field
f // No format (identity)

Renders:

€ 1,234.50
alice

100 Appendix B. WBLL Token Reference

Token h('name[;valuel")

Description Inserts an HTML input element of type hidden. Arguments are positional but
optional. Defaults when omitted: name = active field name, value = active
field value. Cursor rule (editing): the cursor advances when name is not
specified (e.g., just h); if name is provided, the cursor does not advance.

Example Code and output below.

h
h('kind;area')
h('id")
Renders:
<input type="hidden"” name="price"” value="1234.5"><input type="hidden"” name="kind"
— value="area"><input type="hidden" name="id" value="alice">

Token j('code")

Description Injects a script element. The WBPL engine processes code first (placeholders,
expressions), then WBLL emits <script>code</script>. Non-editing; does not
move the field cursor.

Example Code and output below.

j('console.log("Rows:", @@rows)')
Renders:
<script>console.log("Rows:", 3)</script>

Token k('name[;valuel")

Description Sets a session variable. Arguments are positional but optional. Defaults: name
= active field name, value = active field value. Produces no output. Cursor
rule (non-editing): advances only when it implicitly uses the active field value
(i.e., when value is omitted). If value is provided, the cursor does not advance.

Example Code and output below.

k('role;admin')
k

Renders:

101

Token 1('label")

Description Renders a label for the active field’s name. If a string argument is provided as
'label’, it overrides the current field name. Produces no field value output
and does not advance the cursor.

Example Code and output below.

1f
\rl('User Name')f

Renders:

<label>price</label>1234.5
<label>User Name</label>alice

Token m('name[;valuel')
Description Renders a multiline text area: <textarea name="<name>"><value></textarea>.

Arguments are positional but optional. Defaults: name = active field name,
value = active field value. Cursor rule (editing): advances when name is not
specified; if name is provided, does not advance.

Example Code and output below.

m('comments;Hello, world!')m>m(';New York')

Renders:

<textarea name="comments">Hello, world!</textarea><textarea

<— name="price">1234.5</textarea><textarea name="city">New York</textarea>

102 Appendix B. WBLL Token Reference

Token \s('attr="value" ...")

Description Sets content-level attributes: caption, header, footer, key, visible, enabled,
disabled, nodata. Non-editing; does not move the field cursor. Multiple calls
accumulate; later values override earlier ones for the same key.

Example Code and output below.

\s('caption="Users" header="Found: @@rows" key="fId"') 1 f1 f1 f
Renders (table subtype):

<table data-key="fId">

<caption>Users</caption>

<thead>Found: 3</thead>

<tbody>

<tr>

<th>price</th><td>1234.5</td>
<th>username</th><td>alice</td>
<th>city</th><td>Milan</td>

</tr>
</tbody>
</table>
Token t('text")
Description Inserts the given text string into the response flow at the current position.
Non-editing; does not move the field cursor.
Example Code and output below.

t('Hello World!")

Renders:

Hello World!

103

Token w('name[;value]')

Description Renders a password input element: <input type="password” name="<name>"
value="<value>">. Arguments are positional but optional. Defaults: name =
active field name, value = active field value. Cursor rule (editing): advances
when name is not specified; if name is provided, does not advance. Note: some
browsers ignore preset password values.

Example Code and output below.

w('pwd;secret')\rw\rw("';password')
Renders:

<input type="password” name="pwd" value="secret"”>
<input type="password"
< name="price"” value="1234.5">
<input type="password” name="username"
— value="password">

104 Appendix B. WBLL Token Reference

Appendix C

Webbaselets: BPMS, PLM, and Ticket-
ing

This appendix summarizes three foundational webbaselets that commonly ship with a Spin the
Web deployment. Each is delivered as a standalone webbaselet (root STWArea) that can be

imported into any Webbase, sharing common conventions for navigation, security, and data.

« Business Process Management System (BPMS)
o Presence and Leave Management (PLM)
o Ticketing (Service Desk)

All three follow the same patterns:

1. Pages expose task-oriented Ul
2. A clear data model with well-known keys and relations
3. Role-based visibility and action authorization

4. Events and workflows that integrate across webbaselets

C.1 Common Design
Navigation. Each webbaselet registers under its own Area (e.g., slugs bpms, plm, tickets); pages
include Dashboard, Browse/Detail, and Administration.

Security. Every action checks roles and ownership. Typical roles include: reader, contributor,

approver, manager, and admin. Actions are logged.

Search and SEO. Content uses keywords and description attributes for in-context search. Lists

expose filters and faceted navigation.

Auditability. All state transitions are captured with who/when/what; attachments preserved

with versions.

Interoperability. Events are published as notifications that other webbaselets can subscribe to

(e.g., Ticket created -> BPMS starts a triage workflow; Leave approved -> Ticket auto-closes).

C.1.1 Minimal Area Stub

A minimal root for each webbaselet as an STWArea:

105

106 Appendix C. Webbaselets: BPMS, PLM, and Ticketing

1,
. },
: [

Listing C.1: Minimal Webbaselet Root (Area)

C.2 Structured Classification for Webbaselets

To make webbaselets discoverable and governable across the ecosystem, the root STWArea of each
webbaselet SHOULD declare a compact, structured classification. We recommend a dedicated
class object on the Area to avoid collisions with core keys; engines MAY also surface these as

indexed metadata for search.

C.2.1 Classification keys

Recommended fields and value ranges:

C.2. Structured Classification for Webbaselets

107

Field Type Purpose / Examples

purpose enum Primary intent: bpms, plm, ticketing, cms, directory, reporting,
integration, admin.

domain enum Business area: hr, it, finance, sales, marketing, ops, legal, support,
general.

capability string[] Features: workflow, approvals, forms, queueing, sla, search,
analytics, files, notifications, calendar.

layer enum Architectural layer: ui, service, integration, data.

audience string[] Users: employees, managers, admins, agents, external.

criticality enum low, medium, high, critical.

maturity enum experimental, beta, stable, deprecated.

visibility enum public, authenticated, role-restricted.

compliance string[] gdpr, hipaa, sox, pci, 15027001, etc.

dataSensitivity enum public, internal, confidential, pii, phi.

i18n string[] Supported locales (BCP 47): e.g., ["en"”,"it"].

engine object Runtime bounds: "min”: "1.3.0", "max": "<2.0.0".

dependsOn string[] Other webbaselets by namespace and range, e.g., ["directory>=1.2",
"notifications”].

imports string[] Subscribed events/exports (namespaced), e.g.,
["bpms. task.completed”].

exports string[] Emitted events/components, e.g., ["tickets.created”,
"ui.widget:calendar"].

tags string[] Free-form keywords for discovery.

C.2.2 Example

BPMS classification on its root Area:

108 Appendix C. Webbaselets: BPMS, PLM, and Ticketing
{ hH
[: 1,
L 1
L ; 1,
’ ’]
1
3 (01
}
Listing C.2: STWArea with classification

Notes

¢ Engines should index class.* for search and dependency checks.

¢ Recommending enums keeps catalogs consistent; use tags for additional nuance.

e Version ranges follow semantic versioning; omit max for open-ended support.

C.3 Ecosystem Webbaselet (Community Catalog)

The Spin the Web Portal (see part III) includes an Ecosystem webbaselet that catalogs community-

created webbaselets. Its purpose is to classify, make discoverable, and enable quality signals

(rating/reviews) for webbaselets across the ecosystem. It builds directly on the structured

classification in appendix C.2 and extends it with an opinionated, organization-based taxonomy.

C.3.1 Organization-based taxonomy

Classification aligns to common enterprise departments to aid discovery by function:
Domain Examples

hr onboarding, leave, compensation, training

it service desk, change, assets, access management
finance expenses, invoicing, budgeting, approvals

sales leads, opportunities, quotes, forecasts
marketing campaigns, content hub, events, assets

ops facilities, fleet, logistics, maintenance

legal contracts, policies, compliance

procurement vendors, sourcing, purchase requests

support knowledge base, ticket deflection, CSAT

rnd requirements, roadmaps, experiments

product releases, feature flags, feedback

security incidents, awareness, audits

admin directory, identity, governance

general dashboards, search, navigation, utilities

These values map to class.domain and inform facets in catalog pages.

C.3. Ecosystem Webbaselet (Community Catalog) 109

C.3.2 Data model

Key entities managed by the Ecosystem webbaselet:

{
0 {
{ 3
: { }y
0 {
L 5 1
L : .]
3
{) b
{)) }7
1
3t
. 5,
}7
3 ¢ 3 , : 4.6, : 28)
3
Listing C.3: Ecosystem entities
C.3.3 Workflows

e Submission: contributor provides metadata, classification, and links; item enters submitted
state.

o Review/Moderation: approvers validate classification, security notes, and licensing; states:
approved, rejected, changes-requested.

o Publish/Deprecate: approved items are listed; subsequent versions can supersede; deprecated
items remain searchable with badges.

» Rating/Reporting: authenticated users rate (1-5) and review; abuse reports trigger modera-

tion.

110 Appendix C. Webbaselets: BPMS, PLM, and Ticketing

C.3.4 Representative pages

o (Catalog: faceted browse by domain, purpose, capability, and tags; sort by rating and freshness.
o Item Detail: metadata, installation notes, screenshots, version history, ratings, related items.

o Submit/Manage: guided submission, preview, and moderation queue (admin).

C.3.5 Ratings and quality signals

e 1-5 star ratings with weighted average; first-party installs may carry a verified badge.
e Anti-spam: one rating per account per version; optional cool-down windows; abuse reporting.
o Signals: popularity (installs), freshness (recent updates), completeness (docs, tests), compli-

ance tags.

C.3.6 Integration

o Events: ecosystem.item.published, ecosystem.item.updated, ecosystem.review.created.
o Dependencies: Directory (profiles), Notifications, Search/Index.

o Portal linkage: featured items and curated collections surfaced on spintheweb.org (see part III).

C.4 BPMS Webbaselet

Purpose: model, execute, and monitor business processes with tasks, SLAs, and approvals.

C.4.1 Core Concepts

Process Named workflow definition with versioning
Instance Runtime execution of a Process
Task Unit of work assigned to a role/user

Event Signal that triggers transitions or external actions

C.4.2 Data Model

{
{) 3 { Yo 3,
— [, , 5 113,
3 { : 5 : 5 :
— s [1, o
3 ¢)))
— , : , 1 48 3,
i {)))
— }
3

Listing C.4: BPMS entities

C.5. PLM Webbaselet 111

C.4.3 Representative Pages

e Dashboard: My Tasks, Overdue, SLA breaches
o Process Designer: stage/transition editor (admin)

e Instance Detail: timeline, attachments, comments
C.4.4 WBLL Snippet

\s('caption="My Tasks"” key="taskId"')
1f 1 f1f // id, type, status

Listing C.5: My Tasks list (sketch)

C.5 PLM Webbaselet

Purpose: track presence, leave requests, balances, holidays, and approvals.

C.5.1 Data Model

: { 1 2025, : L : 1%

Listing C.6: PLM entities

C.5.2 Representative Pages

¢ My Calendar: presence, requests, approvals
e Team Calendar: manager view, conflicts

o Balances: accrual, consumption, carryover

C.5.3 Events

Examples: leave.requested, leave.approved, leave.rejected. Ticketing can subscribe to create

handover tickets; BPMS can trigger onboarding/offboarding.

C.6 Ticketing Webbaselet

Purpose: log, track, and resolve issues/requests with queues, priorities, and SLAs.

C.6.1 Data Model

112 Appendix C. Webbaselets: BPMS, PLM, and Ticketing

U

})
: { 5 , : ’ : 4: : 48 }
Listing C.7: Ticket entities

C.6.2 Representative Pages

e Submit Ticket: form with WBLL inputs, attachments
e My Tickets: list, filters, bulk actions

e Agent Console: triage, assign, merge, close, macros

C.6.3 Cross-Webbaselet Integrations

e« BPMS: auto-create approval tasks for change requests
¢ PLM: auto-snooze tickets when requester is on leave

e Directory: enrich requester profile and permissions

C.7 Roles and Permissions

Role Capabilities

reader browse lists and details

contributor create/update own domain entities

approver review /approve pending items
manager oversee queues/teams, reports
admin configure processes, queues, calendars

C.8 Notes on Deployment

Each webbaselet can be versioned and deployed independently. Use namespace scoping, feature

flags, and migration scripts for data evolution. Provide sample datasets for demos and QA.

Bibliography

1]

2]

3]

[4]

[5]

Thomas Allweyer. BPMN 2.0: Introduction to the Standard for Business Process Modeling.
BoD—-Books on Demand, 2 edition, 2016.

Tim Berners-Lee, Larry Masinter, and Mark McCahill. Universal resource identifiers in
www. Request for Comments, 1630, 1994.

Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A. Reijers. Fundamentals of

Business Process Management. Springer, 2 edition, 2018.

Roy Thomas Fielding. Architectural styles and the design of network-based software archi-

tectures. University of California, Irvine, 2000.

Jakob Freund and Bernd R'ucker. Real-Life BPMN: Using BPMN 2.0 to Analyze, Improve,

and Automate Processes in Your Company. Camunda Services GmbH, 2 edition, 2014.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: elements
of reusable object-oriented software. Addison-Wesley, 1994.

Sam Newman. Building microservices: designing fine-grained systems. O’Reilly Media, 2015.

Object Management Group. Business process model and notation (bpmn), version 2.0.2.
Technical Report formal/13-12-09, Object Management Group, January 2014. Standard

specification.

Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web services vs. big web
services: making the right architectural decision. In Proceedings of the 17th international
conference on World Wide Web, pages 805-814, 2008.

Bruce Silver. BPMN Method and Style. Cody-Cassidy Press, 2 edition, 2011.

Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, B. Kiepuszewski, and Alistair P. Barros.
Workflow patterns. Distributed and Parallel Databases, 14(1):5-51, 2003.

W3C. Xml schema part 1: Structures second edition. W38C' Recommendation, 2004.

Austin Wright, Henry Andrews, Ben Hutton, and Greg Dennis. Json schema: A media type

for describing json documents, 2020.

113

	Abstract
	Preface
	I The Philosophy
	Introduction to Part I
	Genesis and History
	Introduction to Enterprise Portal Challenges
	Web Portals as Virtualized Companies
	Architecture Overview

	II The Framework
	Introduction to Part II: The Framework
	Webbase Description Language (WBDL)
	Webbase Placeholders Language (WBPL)
	Webbase Layout Language (WBLL)
	Webbase and Webbaselets
	The Web Spinner
	Spin the Web Studio: An Integrated Development Environment
	Technology Stack and Implementation

	III The Web Portal
	Introduction to Part III: The Web Portal
	Implementing Portal Contents: Structure, Semantics, and Information Flow
	Implementing Portal Visuals: Presentation, Layout, and Interaction

	IV The Roadmap
	Introduction to Part IV
	The Roadmap

	Appendices
	WBDL JSON Schema Reference
	WBLL Token Reference
	Webbaselets: BPMS, PLM, and Ticketing

